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Introduction

• 21cmFASTとは analytic model による semi numerical simulation 

• dark-age や epoch of re-ionization でのsignalを計算 

• brightness temperature や 21cm line power spectrum など 

• 近似を用いることで計算時間が短く、比較的手軽に計算できる 

• A Mesinger ,S Furlanetto ,R Cen らによって開発された  

• 元になったsimulationとしてDexMというものもある
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1.21cmFASTにおける計算の流れ 



21cmFAST
spin temperature の取り扱い 
1.近似を用いる(再電離後期以降) 
!
ionizingはUVによるとする 
計算時間   1並列2~3時間 
　　　　　8並列2~3時間 
2.丁寧に計算する(再電離初期以前) 
!
!
ionizingはUVとx-rayによるとする 
計算時間   1並列4日 
　　　　　8並列10~11時間
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Here ε(ν) is the number of photons produced per Hz per stellar
baryon, and is evaluated at the emitted (rest frame) frequency:
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The upper limit of the redshift integral in eq. (21) corresponds to
the redshift of the next Lyman resonance:
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. (24)

Following Barkana & Loeb (2005b), we truncate the sum at
nmax = 23, and use their Population II and Population III spectral
models for ε(ν). For computational efficiency, one can rearrange
the terms in eq. (21), placing the sum over Lyman transitions inside
the redshift integral. Substituting in eq. (22) and simplifying, we
obtain:
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where the contribution from the sum over the Lyman transitions is
a function of z′, and is zero at z′ > zmax(n = 2).

The total Lyman α background is then just the sum of the
above components:

Jα,tot(x, z) = Jα,X(x, z) + Jα,∗(x, z) . (26)

In our fiducial model, we do not explicitly take into account other
soft-UV sources of Lyα such as quasars, assuming that these
are sub-dominant to the stellar emission. However, our frame-
work makes it simple to add additional source terms to the inte-
grand of eq. (21), if the user wishes to explore such scenarios (e.g.
Volonteri & Gnedin 2009).

3.3 Results: complete δTb evolution

All of the results in this section are from an L = 1 Gpc simula-
tion, whose ICs are sampled on a 18003 grid, with the final low-
resolution boxes being 3003 (3.33 Mpc cells). Our fiducial model
below assumes f∗ = 0.1, ζX = 1057M−1

⊙ (∼ 1 X-ray photon per
stellar baryon)23, hν0 = 200 eV, α = 1.5, Tvir,min = 104 K for all
sources (X-ray, Lyman α and ionizing), C = 2, Rmax = 30 Mpc,
ζion = 31.524 and the stellar emissivity, ε, of Pop II stars from
Barkana & Loeb (2005b) normalized to 4400 ionizing photons per
stellar baryon. The free parameters pertaining to the spin temper-
ature evolution were chosen to match those in Furlanetto (2006)
and Pritchard & Furlanetto (2007), to facilitate comparison. It is
trivial to customize the code to add, for example, redshift or halo

23 This number was chosen to match the total X-ray luminosity per unit
star formation rate at low redshifts (see Furlanetto 2006 and references
therein for details).
24 This emissivity was chosen so that the midpoint of reionization is z ∼

10 and the end is z ∼ 7.

Figure 10. Evolution of the mean temperatures from 21cmFAST in our
fiducial model. Solid, dashed and dotted curves show TS, TK and Tγ , re-
spectively.

mass dependences to these free parameters. The impressive length
of the above list of uncertain astrophysical parameters (which itself
is only a simplified description of the involved processes) serves
well to underscore the need for a fast, portable code, capable of
quickly scrolling through parameter space.

We also note that the TS calculations outlined in §3 are the
slowest part of the 21cmFAST code (as they involve tracking evo-
lution down to the desired redshift), and therefore should only be
used in the regime where they are important (z ∼

> 17 in our fiducial
model). For example, generating a δTb box, assuming TS ≫ Tγ ,
on a 3003 grid takes only a few minutes on single processor (de-
pending on the choice of higher resolution for sampling the ICs).
However, including the spin temperature field takes an additional
day of computing time. Nevertheless, once the spin temperature
evolution is computed for a given realization at z, all of the inter-
mediate outputs at z′ > z can be used to compute δTb at those
redshifts at no additional computation cost.

Before showing detailed results, it would be useful
to summarize the various evolutionary stages (c.f. §3.1
in Pritchard & Furlanetto 2007). The reader is encour-
aged to reference the evolution of the mean temperatures
shown in Fig. 10 and/or view the full movie available at
http://www.astro.princeton.edu/∼mesinger/Movies/delT.mov,
while reading below.

(i) Collisional coupling; T̄K = T̄S ≤ Tγ : At high redshifts,
the IGM is dense, so the spin temperature is collisionally coupled
to the gas kinetic temperature. The gas temperature is originally
coupled to the CMB, but after decoupling cools adiabatically as ∝
(1+z)−2, faster than the CMB. The 21-cm brightness temperature
offset from the CMB in this regime starts at zero, when all three
temperatures are equal, and then becomes increasingly negative as
TS and TK diverge more and more from Tγ . The fluctuations in δTb

are driven by the density field, as collisional coupling is efficient
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it will likely be these which regulate the achievable constraints on
x̄HI. Therefore it is imperative for models to be fast and be able
to span large regions of parameter space. A single 21cmFAST re-
alization of the δTb fields shown in this section (generated from
15363 ICs) takes ∼ 30 minutes to compute on a single-processor
computer.

3 THE SPIN TEMPERATURE

We now relax the requirement in §2 of TS ≫ Tγ , and derive the
full 21-cm brightness temperature offset from eq. (1), including the
spin temperature field. As mentioned previously, models predict
that the heating epoch concluded well before the bulk of reioniza-
tion, at z ≫ 10 (Furlanetto 2006; Chen & Miralda-Escudé 2008;
Santos et al. 2008; Baek et al. 2009). However, the second gener-
ation 21-cm interferometers, such as SKA, might be able to peak
into this high-redshift regime of the dark ages. Furthermore, the
astrophysical quantities at high-z are uncertain, and we do not re-
ally know how robust is the assumption of TS ≫ Tγ even during
the early stages of reionization. Therefore, for many applications,
especially parameter studies, it is important to compute the spin
temperature field. Unfortunately, there is currently no numerical
simulation which includes the computationally expensive radiative
transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
see the recent work of Baek et al. 2010, who perform RT simula-
tions on a small subset of sources, withM ∼

> 1010M⊙). Therefore
we cannot directly compare our the spin temperature fields to nu-
merical simulations.

Our derivations in this section are similar to other semi-
analytic models (Furlanetto 2006; Pritchard & Furlanetto 2007;
Santos et al. 2008). However, unlike Santos et al. (2008) and
Santos et al. (2009), we do not explicitly resolve the halo field as
an intermediary step. Instead we operate directly on the evolved
density fields, using excursion set formalism to estimate the mean
number of sources inside spherical shells corresponding to some
higher redshift. As discussed above, bypassing the halo field allows
the code to be faster, with modest memory requirements. Below we
go through our formalism in detail.

The spin temperature can be written as (e.g. Furlanetto et al.
2006):

T−1
S =

T−1
γ + xαT−1

α + xcT
−1
K

1 + xα + xc
(5)

where TK is the kinetic temperature of the gas, and Tα is the color
temperature, which is closely coupled to the kinetic gas tempera-
ture, Tα ≈ TK (Field 1959). There are two coupling coefficients
in the above equation. The collisional coupling coefficient can be
written as:

xc =
0.0628 K
A10Tγ

[

nHIκ
HH
1−0(TK) + neκ

eH
1−0(TK) + npκ

pH
1−0(TK)

]

,

(6)
where A10 = 2.85 × 10−15 s−1 is the spontaneous
emission coefficient, nHI, ne, and np are the number den-
sity of neutral hydrogen, free electrons, and protons respec-
tively, and κHH

1−0(TK), κeH
1−0(TK), and κpH

1−0(TK) are taken
from Zygelman (2005), Furlanetto & Furlanetto (2007), and
Furlanetto & Furlanetto (2007), respectively. The Wouthuysen-

Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient can
be written as:

xα = 1.7× 1011(1 + z)−1SαJα , (7)

where Sα is a correction factor of order unity involving detailed
atomic physics, and Jα is the Lyman α background flux in units
of pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to
Hirata (2006).

According to the above equations, there are two main fields
governing the spin temperature: (1) the kinetic temperature of the
gas, TK(x, z), and (2) the Lyα background, Jα(x, z). We address
these in §3.1 and §3.2, respectively.

3.1 The Kinetic Temperature

3.1.1 Evolution Equations

To calculate the kinetic temperature, one must keep track of the in-
homogeneous heating history of the gas. We begin by writing down
the evolution equation for TK(x, z) and the local ionized fraction in
the “neutral” (i.e. outside of the ionized regions discussed in § 2.2)
IGM, xe(x, z):

dxe(x, z′)

dz′
=

dt
dz′

[

Λion − αACx2
enbfH

]

, (8)

dTK(x, z
′)

dz′
=

2
3kB(1 + xe)

dt
dz′

∑

p

ϵp

+
2TK

3nb

dnb

dz′
−

TK

1 + xe

dxe

dz′
, (9)

where nb = n̄b,0(1 + z′)3[1 + δnl(x, z
′)] is the total (H +

He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
fraction16, and we distinguish between the output redshift of in-
terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z

′) ≈
δnl(x, z)D(z′)/D(z), where D(z) is the linear growth factor.
In principle, we should follow the non-linear redshift evolution
of each cell’s density, δnl(x, z′). However, linearly extrapolating
backwards from z is a good approximation, considering that the

15 Note that our notation is different than that in Furlanetto (2006) and
Pritchard & Furlanetto (2007), who present heating and ionization rates per
proper volume.
16 Equation (8) ignores Helium recombinations, which is a good approx-
imation given that most He recombining photons will cause ionizations of
HI or HeI.
17 For clarity of presentation, we will only explicitly show dependent vari-
ables of functions on the left hand side of equations. Where is is obvious,
we also do not explicitly show dependences on (x, z′).
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it will likely be these which regulate the achievable constraints on
x̄HI. Therefore it is imperative for models to be fast and be able
to span large regions of parameter space. A single 21cmFAST re-
alization of the δTb fields shown in this section (generated from
15363 ICs) takes ∼ 30 minutes to compute on a single-processor
computer.

3 THE SPIN TEMPERATURE

We now relax the requirement in §2 of TS ≫ Tγ , and derive the
full 21-cm brightness temperature offset from eq. (1), including the
spin temperature field. As mentioned previously, models predict
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tion, at z ≫ 10 (Furlanetto 2006; Chen & Miralda-Escudé 2008;
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astrophysical quantities at high-z are uncertain, and we do not re-
ally know how robust is the assumption of TS ≫ Tγ even during
the early stages of reionization. Therefore, for many applications,
especially parameter studies, it is important to compute the spin
temperature field. Unfortunately, there is currently no numerical
simulation which includes the computationally expensive radiative
transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
see the recent work of Baek et al. 2010, who perform RT simula-
tions on a small subset of sources, withM ∼

> 1010M⊙). Therefore
we cannot directly compare our the spin temperature fields to nu-
merical simulations.

Our derivations in this section are similar to other semi-
analytic models (Furlanetto 2006; Pritchard & Furlanetto 2007;
Santos et al. 2008). However, unlike Santos et al. (2008) and
Santos et al. (2009), we do not explicitly resolve the halo field as
an intermediary step. Instead we operate directly on the evolved
density fields, using excursion set formalism to estimate the mean
number of sources inside spherical shells corresponding to some
higher redshift. As discussed above, bypassing the halo field allows
the code to be faster, with modest memory requirements. Below we
go through our formalism in detail.

The spin temperature can be written as (e.g. Furlanetto et al.
2006):

T−1
S =

T−1
γ + xαT−1

α + xcT
−1
K

1 + xα + xc
(5)

where TK is the kinetic temperature of the gas, and Tα is the color
temperature, which is closely coupled to the kinetic gas tempera-
ture, Tα ≈ TK (Field 1959). There are two coupling coefficients
in the above equation. The collisional coupling coefficient can be
written as:

xc =
0.0628 K
A10Tγ

[

nHIκ
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1−0(TK) + neκ
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where A10 = 2.85 × 10−15 s−1 is the spontaneous
emission coefficient, nHI, ne, and np are the number den-
sity of neutral hydrogen, free electrons, and protons respec-
tively, and κHH

1−0(TK), κeH
1−0(TK), and κpH

1−0(TK) are taken
from Zygelman (2005), Furlanetto & Furlanetto (2007), and
Furlanetto & Furlanetto (2007), respectively. The Wouthuysen-

Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient can
be written as:

xα = 1.7× 1011(1 + z)−1SαJα , (7)

where Sα is a correction factor of order unity involving detailed
atomic physics, and Jα is the Lyman α background flux in units
of pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to
Hirata (2006).

According to the above equations, there are two main fields
governing the spin temperature: (1) the kinetic temperature of the
gas, TK(x, z), and (2) the Lyα background, Jα(x, z). We address
these in §3.1 and §3.2, respectively.

3.1 The Kinetic Temperature

3.1.1 Evolution Equations

To calculate the kinetic temperature, one must keep track of the in-
homogeneous heating history of the gas. We begin by writing down
the evolution equation for TK(x, z) and the local ionized fraction in
the “neutral” (i.e. outside of the ionized regions discussed in § 2.2)
IGM, xe(x, z):
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where nb = n̄b,0(1 + z′)3[1 + δnl(x, z
′)] is the total (H +

He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
fraction16, and we distinguish between the output redshift of in-
terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z

′) ≈
δnl(x, z)D(z′)/D(z), where D(z) is the linear growth factor.
In principle, we should follow the non-linear redshift evolution
of each cell’s density, δnl(x, z′). However, linearly extrapolating
backwards from z is a good approximation, considering that the

15 Note that our notation is different than that in Furlanetto (2006) and
Pritchard & Furlanetto (2007), who present heating and ionization rates per
proper volume.
16 Equation (8) ignores Helium recombinations, which is a good approx-
imation given that most He recombining photons will cause ionizations of
HI or HeI.
17 For clarity of presentation, we will only explicitly show dependent vari-
ables of functions on the left hand side of equations. Where is is obvious,
we also do not explicitly show dependences on (x, z′).
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spin temperature の進化



calculation
21cmFAST計算の流れ 
0 : 初期条件(密度場と速度場、z=300) 
!
!
1 : zごとに 密度場 イオン化率 速度場 (スピン温度) 
!
!
2 : 輝度温度のマップ 
!
!
3 : 21cm線パワースペクトル 
!
!
1に戻る

zごとに繰り返し計算 
デフォルトでは６＜z＜３５



 RT simulation
• 21cmFASTの計算はTracによるRT simulation(Trac et al 2008) を再現
するようにできている。 

• DM粒子数は1536^3個、RTは512^3gridで計算。 

• DMの粒子の計算にはPMM法(PM法を改良したもの)によるN体計算 

• ガスの密度と温度を計算し、ビリアル温度からハローを決定 

• ハローのうち、いくつかの条件を満たしたものが星になるとする。 

• 星からの放射はRadiative transferで計算。光子(UV)の密度を計算。 

• 水素とヘリウムの密度について時間発展をみる。イオン化率の計算。



2.スピン温度に近似を用いる場合 



21cmFAST Ts>>Tγ
!

Brightness temperature

2 Mesinger et al.

Thus one is forced to make compromises: deciding which physical
processes can be ignored, and how the others can be parameterized
and efficiently folded into large-scale models. Furthermore, large-
scale simulations are computationally costly (even when they sacri-
fice completeness for speed by ignoring hydrodynamic processes)
and thus are inefficient in large parameter studies.

On the other hand, analytic models, while more approximate,
are fast and can provide physical insight into the import of vari-
ous processes. However, analytical models are hard-pressed to go
beyond the linear regime, and beyond making fairly simple predic-
tions such as the mean 21-cm signal (Furlanetto 2006), the prob-
ability density function (PDF; Furlanetto et al. 2004a) and power
spectrum (Pritchard & Furlanetto 2007; Barkana 2009). The 21-
cm tomographic signal should be rich in information, accommo-
dating many additional, higher-order statistical probes, such as the
bi-spectrum (Pritchard et al., in preparation), the difference PDF
(Barkana & Loeb 2008), etc.

In this paper, we follow a path of compromise, attempting
to preserve the most useful elements of both analytic and nu-
meric approaches. We introduce a self-consistent, semi-numerical4
simulation, specifically optimized to predict the high-redshift 21-
cm signal. Through a combination of the excursion-set formal-
ism and perturbation theory, our code can generate full 3D re-
alizations of the density, ionization, velocity, spin temperature,
and ultimately 21-cm brightness temperature fields. Although the
physical processes are treated with approximate methods, our
results agree well with a state-of-the-art hydrodynamic simula-
tion of reionization. However, unlike numerical simulations, re-
alizations are computationally cheap and can be generated in a
matter of minutes on a single processor, with modest memory
requirements. Most importantly, our code is publicly available
at http://www.astro.princeton.edu/∼mesinger/Sim.html. We name
our simulation 21cmFAST.

Semi-Numerical approaches have already proved invaluable
in reionization studies (Zahn et al. 2005; Mesinger & Furlanetto
2007; Geil & Wyithe 2008; Alvarez et al. 2009; Choudhury et al.
2009; Thomas et al. 2009). Indeed, 21cmFAST is a more special-
ized version of our previous code, DexM (Mesinger & Furlanetto
2007; hereafter MF07). The difference between the two is that
21cmFAST bypasses the halo finding algorithm, resulting in a
faster code with a larger dynamic range and more modest memory
requirements. In this work, we also introduce some new additions
to our code, mainly to compute the spin temperature.

In §2, we compare predictions from 21cmFAST with those
from hydrodynamic simulations of the various physical compo-
nents comprising the 21-cm signal in the post heating regime. Den-
sity, ionization, peculiar velocity gradient, and full 21-cm bright-
ness temperature fields are explored in §2.1, §2.2, §2.3, §2.4, re-
spectively. In §3, we introduce our method for computing the spin
temperature fields, with results from the complete calculation (in-
cluding the spin temperature) presented in §3.3. Finally in §4, we
summarize our findings.

Unless stated otherwise, we quote all quantities in comov-
ing units. We adopt the background cosmological parameters (ΩΛ,
ΩM, Ωb, n, σ8, H0) = (0.72, 0.28, 0.046, 0.96, 0.82, 70 km s−1

Mpc−1), matching the five–year results of the WMAP satellite
(Komatsu et al. 2009).

4 By “semi-numerical” we mean using more approximate physics than nu-
merical simulations, but capable of independently generating 3D realiza-
tions.

2 21-CM TEMPERATURE FLUCTUATIONS POST
HEATING (TS ≫ Tγ )

Our ultimate goal is to compute the 21 cm background, which re-
quires a number of physics components. To identify them, note that
the offset of the 21-cm brightness temperature from the CMB tem-
perature, Tγ , along a line of sight (LOS) at observed frequency ν,
can be written as (c.f. Furlanetto et al. 2006):

δTb(ν) =
TS − Tγ

1 + z
(1− e−τν0 ) ≈

27xHI(1 + δnl)

(

H
dvr/dr +H

)(

1−
Tγ

TS

)

×

(

1 + z
10

0.15
ΩMh2

)1/2 (Ωbh
2

0.023

)

mK, (1)

where TS is the gas spin temperature, τν0 is the optical depth at the
21-cm frequency ν0, δnl(x, z) ≡ ρ/ρ̄− 1 is the evolved (Eulerian)
density contrast, H(z) is the Hubble parameter, dvr/dr is the co-
moving gradient of the line of sight component of the comoving ve-
locity, and all quantities are evaluated at redshift z = ν0/ν−1. The
final approximation makes the assumption that that dvr/dr ≪ H ,
which is generally true for the pertinent redshifts and scales, though
we shall return to this issue in §2.3.

In this comparison section, we make the standard, simpli-
fying assumption of working in the post-heating regime: TS ≫
Tγ . For fiducial astrophysical models, this is likely a safe
assumption during the bulk of reionization (Furlanetto 2006;
Chen & Miralda-Escudé 2008; Santos et al. 2008; Baek et al.
2009). We will however revisit this assumption in §3, where we
introduce our method for computing the spin temperature field.

The remaining components of eq. 1 are the density, δnl, the
ionization, xHI, and the velocity gradient, dvr/dr. Below, we study
these in turn, comparing 21cmFAST to the hydrodynamic cosmo-
logical simulation of Trac et al. (2008), using the same initial con-
ditions (ICs). We perform “by-eye” comparisons at various red-
shifts/stages of reionization, as well as one and two-point statis-
tics: the PDFs (smoothed on several scales), and the power spectra.
Since our code is designed to simulate the cosmological 21-cm sig-
nal from neutral hydrogen, we study the regime before the likely
completion of reionization, z ∼

> 7 (though present data is even
consistent with reionization completing at z ∼

<6; Lidz et al. 2007;
Mesinger 2009).

The simulations of Trac et al. (2008) are the current “state-of-
the-art” reionization simulations. They include simultaneous treat-
ment of dark matter (DM) and gas, five-frequency radiative transfer
(RT) on a 5123 grid, and they resolve Mhalo ∼

> 108M⊙ ionizing
sources with ∼

> 40 DM particles in a 143 Mpc box.

2.1 Evolved Density Field

We calculate the evolved density field in the same fashion as in the
“parent” code, DexM, outlined in MF07. In short, we generate den-
sity and velocity ICs in initial (Lagrangian) space, in roughly the
same manner as numerical cosmological simulations. We then ap-
proximate gravitational collapse by moving each initial matter par-
ticle (whose mass is the total mass in the corresponding IC cell) ac-
cording to first-order perturbation theory (Zel’Dovich 1970). First-
order perturbation theory is very computationally convenient as the
displacement field is a separable function of space and time, so
the spatial component need only be computed once for each re-
alization/box. There is no separate treatment of baryons and DM.
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Figure 7. δTb maps. The slices are generated from the hydrodynamic simulation, DexM (MF07), and 21cmFAST, left to right columns. All slices are 143
Mpc on a side and 0.56 Mpc thick, and correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65), (7.04, 0.38), and (6.71, 0.20), top to bottom.
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スピン温度について近似を用いる場合の計算をみていく



Initial Conditions
初期条件は数値シミュレーション(Trac et al 2008)と同じものを利用 
!
密度と速度の初期条件をz=300で1536^3のgridに与える 
与えられた密度は速度によって一度進化する。 
!
!
速度場と得られた密度場は768^3のgridに示される 
!
!
この密度場をZel’dovich近似でzごとに計算していく 
密度場と速度場などの計算結果は 
768^3と256^3のgridでそれぞれ計算される



Evolved Density Field
密度の進化はZel’dovich approximation 

!

first order perturbationとlinearな解の
組み合わせで、密度の成長は線形成長因
子と密度の初期値に依る。 

simulationと比べると 

　大スケール(k<5)では良く一致している 

　小スケールでは大きくずれる 

Zel’dovich approximationが原因 

21cmFASTではbaryonic physicsを考え
ていないので、基本的にDMに近いはず

4 Mesinger et al.

Figure 2. PDFs of the density fields smoothed on scale Rfilter, computed from the gas (solid red curves), DM (dotted green curves), and 21cmFAST (dashed
blue curves) fields, at z = 20, 15, 10, 7 (top to bottom). The left panel corresponds to Rfilter = 0.5Mpc; the right panel corresponds to Rfilter = 5 Mpc. All
smoothing was performed with a real-space, top-hat filter.

DM, linearly-extrapolated ICs, and 21cmFAST are shown clock-
wise from the top left panel. It is evident that the Zel’Dovich ap-
proximation works quite well for this purpose, accurately repro-
ducing the cosmic web. We do not capture baryonic physics, and
so the 21cmFAST output looks more similar to the DM than the
gas. However, hydrodynamics is not included even in most of the
present-day cosmological (∼> 100Mpc) simulations (e.g. Iliev et al.
2006; McQuinn et al. 2007; see the recent review in Trac & Gnedin
2009).

Also note that the linear density field is only accurate on large
scales (∼> 10 Mpc at z ∼ 7). Thus care should be taken in applying
tools which rely on the linear density field (such as the standard ex-
cursion set formalism) at smaller scales. Nevertheless, we include
in 21cmFAST a feature to evolve the density field using fully lin-
ear evolution, instead of the perturbation approach discussed above.
This allows one to generate extremely large boxes at low resolution.
When using this feature, one should make sure that the chosen cell
size is indeed in the linear regime at the redshift of interest. Some
results making use of this feature are presented below.

In Fig. 2, we show the PDFs of the density fields smoothed on
scaleRfilter, computed from the gas (solid red curves), DM (dotted
green curves), and 21cmFAST (dashed blue curves) fields, at z =
20, 15, 10, 7 (top to bottom). From the left panel (Rfilter = 0.5
Mpc), we see that as structure formation progresses, we tend to
increasingly over-predict the abundance of small scale underdensi-
ties, and under-predict the abundance of large-scale overdensities.
However, even at z = 7, our PDFs are accurate at the percent level
to over a dex around the mean density. Understandably, the agree-
ment between the PDFs becomes better with increasing scale (see
the right panel corresponding toRfilter = 5Mpc). Interestingly, the
DM distributions match the gas quite well, although this is some-
what of a coincidence, as we shall see from the power spectra be-
low.

In Figure 3, we present the density power spectra, defined
as ∆2

δδ(k, z) = k3/(2π2V ) ⟨|δ(k, z)|2⟩k. The solid red, dotted
green, and dashed blue curves correspond to the gas, DM, and
21cmFAST fields, respectively. On small scales (k ∼

> 5 Mpc−1),

Figure 3. Density power spectra, ∆2
δδ(k, z), of the gas (solid red curves),

DM (dotted green curves), and 21cmFAST (dashed blue curves) fields, at
at z = 20, 15, 10, 7 (top to bottom).

the three fields have different power. The collapse of gas is ini-
tially delayed with respect to the pressureless DM, resulting in less
small scale power. The perturbation theory approach of 21cmFAST
is closer in spirit to the DM evolution, but does not capture virial-
ized structure. In fact the close agreement at z = 7 between the
gas and 21cmFAST density power spectra is a coincidence, with
the small-scale flattening of the 21cmFAST power attributable to
“shell-crossing” by the matter particles in the Zel’Dovich approxi-
mation. During reionization, the evolution of the gas is very com-
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密度揺らぎのpower spectrum 
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る。(Ts ≫ Tγ)この近似は再イオン化後期になると (z=15くらい)X線によ
る加熱が強く、スピン温度はガスの温度とともに急激に上昇し、そのとき
CMB温度を遥かに超えてしまうという宇宙の熱進化に則ったものである。
この近似によって、輝度温度がスピン温度や CMB温度によらなくなる。
そうなると輝度温度の計算で問題になるのは（１）式中の xHI , δnl, dvr/dr

である。これからの章ではこの三つの計算について 21cmFASTでどのよ
うに行われているかみていく。

1.3 evolved density field

　 21cmFASTでは初期条件（ICs）として空間に密度と速度を与える。
初期条件の値は流体シュミレーション（Trac et al.2008）と同じものを用
いている。z = 300で空間に与えられたこの条件を進化させていく。さて、
密度場の計算ではゼルドビッチ近似（Zel’Dovich 1970)というものを用い
る。ゼルドビッチ近似は比較的大きなスケールの非線形性を記述する。ラ
グランジュ空間の運動の式で一次の摂動を考えたものの解を線形の場合の
解と一致させて得る式を非線形の領域に外挿する。計算は省くが、この近
似を用いることによって、一次の揺らぎを時間依存する線形成長因子と空
間の初期揺らぎに分離することが可能になる。こうすることで、初期条件
を与えた後の計算は時間依存性のみを追えばよくなるので、計算が簡単に
なるのである。
注釈的に説明する。まずEulerian座標とLagrangian座標を考えて、Eu-

lerian座標が Lagrangian座標（一定）と変位ベクトル（一様からのズレ）
の和で書けるとする。

x(q, t) = q + p(q, t) (1.6)

この式から密度揺らぎを導く、それは一次の摂動を考慮したものである。
密度揺らぎは線形理論では線形成長因子（時間）と初期密度揺らぎ（空
間）に分離できることが知られている。一次の摂動の密度揺らぎが線形理
論の密度揺らぎに一致するとして pを決定する。そうして得られた流体素
片の Eulerian座標での運動は

x(q, t) = q +D(t)∇qψ0(q) (1.7)

というようになり、非線形領域にまで外挿する。この式は揺らぎが十分小
さい時に正しい。つまり大きなスケールほど正確な近似となっている。

2



Ionization field
ionizing photonとしてUVを考えている 

あるzある点xで半径Rの球を考える。その中に十分な量のcollapseしたハロー
が存在すれば、そのxのあるcellは完全にイオン化しているとする。 

その基準として 

　f_coll : 球(半径R)の質量に対するcollapse haloの質量比 

　ζ: ionizing efficiency(default 31.5) 

Rは最大値(R_max:ionizing photonのmean free path)から最小値(R_cell)
まで小さくしていく。 

最後まで(R_cell)基準に満たなかったとき、そのxのあるcellをpartially 
ionized cellとして、イオン化率を　　　　　　　 とする。
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plicated, since the power spectrum on small scales is sensitive to
the thermal history of the reionization model (e.g. Hui & Gnedin
1997).

On large scales (k ∼
< 0.5 Mpc−1), all three power spectra

agree remarkably at all epochs. To put this into perspective, neither
the MWA nor LOFAR have sufficient signal to noise to detect the
21-cm signal beyond k ∼

> 2Mpc−1 (e.g. McQuinn et al. 2006).

2.2 Ionization Field

We use a new, refined, semi-numeric algorithm, FFRT, presented in
Zahn et al. (2010) to generate ionization fields, xHI(x, z). The ion-
ization fields have been exhaustively compared against cosmologi-
cal RT codes in Zahn et al. (2010), yielding good agreement across
a broad range of statistical diagnostics on moderate to large scales.
Thus, we will not present further tests here. Instead, we merely out-
line the procedure, and motivate some aspects with regards to the
goals of 21cmFAST: speed and efficiency.

We use the excursion-set approach for identifying HII regions,
pioneered by Furlanetto et al. (2004b). The foundation of this ap-
proach is to require that the number of ionizing photons inside a re-
gion be larger than the number of hydrogen atoms it contains. Then
ionized regions are identified via an excursion-set approach, start-
ing at large scales and progressing to small scales, analogous to the
derivation of the Press-Schechter (PS) mass functions (Bond et al.
1991; Lacey & Cole 1993).

Specifically, we flag fully ionized cells in our box as those
which meet the criteria fcoll(x, z, R) ≥ ζ−1, where ζ is some
efficiency parameter and fcoll(x, z, R) is the collapse fraction
smoothed on decreasing scales, starting from a maximum Rmax

Mpc and going down to the cell size, Rcell. Additionally, we al-
low for partially-ionized cells by setting the cell’s ionized frac-
tion to ζfcoll(x, z, Rcell) at the last filter step for those cells
which are not fully ionized6. The ionizing photon horizon, Rmax,
is a free parameter which can be chosen to match the extrap-
olated ionizing photon mean free path, in the ionized IGM, at
z ∼ 7–10 (e.g. Storrie-Lombardi et al. 1994;Miralda-Escudé 2003;
Choudhury et al. 2008). The photon sinks dominating the mean
free path of ionizing photons are likely too small to be resolved in
reionization simulations. An effective horizon due to photon sinks
can delay the completion of reionization (e.g. Choudhury et al.
2009; Furlanetto & Mesinger 2009), and cause a drop in large scale
21-cm power, as we shall see below.

There are two main differences between FFRT used in 21cm-
FAST and the previous incarnation of our HII bubble finder used in
DexM (MF07): (1) the use of the halo finder to generate ionization
fields in DexM (MF07) vs. using the evolved density field and con-
ditional PS to generate ionization fields in 21cmFAST; and (2) the
bubble flagging algorithm, which in MF07 is taken to paint the en-
tire spherical region enclosed by the filter as ionized (“flagging-the-
entire-sphere”), whereas for 21cmFAST we just flag the central cell
as ionized (“flagging-the-central-cell”; for more information, see
Zahn et al. 2007; Mesinger & Furlanetto 2007 and the appendix in

6 Our algorithm also can optionally account for Poisson fluctuations
in the halo number, when the mean collapse fraction becomes small,
fcoll(x, z,Rcell) × Mcell < 50Mmin, where Mcell is the total mass
within the cell and our faintest ionizing sources correspond to a halo mass
of Mmin. This last step is found to be somewhat important when the cell
size increases to

∼
> 1Mpc (see appendix in Zahn et al. 2010). This is left as

an option since turning off such stochastic behavior allows the user to better
track the deterministic redshift evolution of a single realization.

Zahn et al. (2010). These default settings of 21cmFAST were cho-
sen to maximize speed and dynamic range, while minimizing the
memory requirements. Nevertheless, they are left as user-adjustable
options in the codes.

The first difference noted above means that 21cmFAST does
not explicitly resolve source halos. In MF07, we made use of
a semi-numerically generated halo field, which accurately re-
produces N-body halo fields down to non-linear scales (MF07;
Mesinger et al., in preparation). As in numerical reionization sim-
ulations, these halos were assumed to host ionizing sources. How-
ever, the intermediate step of generating such halo source fields
adds additional computation time, and generally requires many GB
of RAM for typical cosmological uses. As for numerical simula-
tions, this memory requirement means that simulation boxes are
limited to ∼

< 200Mpc if they wish to resolve atomically-cooled ha-
los at z = 7–10, and even smaller sizes if they wish to resolve these
at higher redshifts or resolve molecularly-cooled halos. Although
DexM’s halo finder is much faster than N-body codes, and can gen-
erate halo fields at a given redshift in a few hours on a single pro-
cessor, extending the dynamic range even further without hundreds
of GB of RAM would be very useful. Alternatives to extending
the dynamic range have been proposed by McQuinn et al. (2007);
Santos et al. (2009). These involve stochastically populating cells
with halos below the resolution threshold. Although computation-
ally efficient, it is unclear if these alternatives preserve higher-order
statistics of the non-Gaussian fcoll(x, z, R) field, as each cell is
treated independently from the others. More fundamentally, the
stochasticity involved makes it difficult to deterministically track
the redshift evolution of a single realization: halos effectively pop
in and out of existence from one redshift output to the next.

Therefore, to increase speed and dynamic range, we use
the FFRT algorithm, which uses the conditional PS formalism
(Lacey & Cole 1993; Somerville & Kolatt 1999) to generate the
collapsed mass (i.e. ionizing source) field. Since conditional PS
operates directly on the density field, without needing to resolve
halos, one can have an enormous dynamic range with a relatively
small loss in accuracy (compare FFRT and FFRT-S in Zahn et al.
2010). Most importantly, when computing fcoll(x, z, R) we use
the non-linear density field, generated according to §2.1, instead of
the standard linear density field. The resulting ionization fields are
a much better match to RT simulations than those generated from
the linear density field (Zahn et al. 2010; foreshadowed also by the
ICs panel in Fig. 1 above). We normalize the resulting collapsed
mass field to match the Sheth-Tormen (ST) mean collapse fraction,
which in turn matches numerical simulations (see eq. 14 and asso-
ciated discussion).

The other major difference is that by default, FFRT in 21cm-
FAST flags just the central filter cell, instead of the entire sphere
enclosed by the filter, as in MF07. The main motivation for this
switch is that the former algorithm is O(N), while the later is
slower: O(N) at x̄HI ∼ 1 but approaching O(N2) as x̄HI → 0
. There are some other minor differences between the FFRT and
the ionization scheme in MF07, such as the use of a sharp k-space
filter instead of a spherical top-hat, but these have a smaller impact
on the resulting ionization maps.
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flagging & f_coll
ionizing fieldの決定（a,bの二種類） 

a.flagging central cell : xのあるcellのみにイオン化したというflagをたてる 

!

b.flagging entire sphere : 考えている球中のすべてのcellにflagをたてる 

f_collの計算方法（a,bの二種類） 

a.Press-Schechter mass functionのように、密度揺らぎから計算する 

!

b.密度揺らぎからあらかじめハローの位置を導いておいて、そこから球中の
ハローの質量を計算する。

計算時間
短い

長い

計算時間
短い

長い

21cmFASTはどちらもa  DexMはどちらもb



• 各天体のもつ速度によって、power spectrumが変化する(Kaiser effect) 

• 21cmFASTでは基本的に、この項について　　　　　　　　　　　という
近似を用いる。 

• 計算することもできる(Zel’dovich近似) 

• ただし、発散を防ぐために上限有り　　　　　　　　　　　　　

Peculiar Velocity gradient field

2 Mesinger et al.

Thus one is forced to make compromises: deciding which physical
processes can be ignored, and how the others can be parameterized
and efficiently folded into large-scale models. Furthermore, large-
scale simulations are computationally costly (even when they sacri-
fice completeness for speed by ignoring hydrodynamic processes)
and thus are inefficient in large parameter studies.

On the other hand, analytic models, while more approximate,
are fast and can provide physical insight into the import of vari-
ous processes. However, analytical models are hard-pressed to go
beyond the linear regime, and beyond making fairly simple predic-
tions such as the mean 21-cm signal (Furlanetto 2006), the prob-
ability density function (PDF; Furlanetto et al. 2004a) and power
spectrum (Pritchard & Furlanetto 2007; Barkana 2009). The 21-
cm tomographic signal should be rich in information, accommo-
dating many additional, higher-order statistical probes, such as the
bi-spectrum (Pritchard et al., in preparation), the difference PDF
(Barkana & Loeb 2008), etc.

In this paper, we follow a path of compromise, attempting
to preserve the most useful elements of both analytic and nu-
meric approaches. We introduce a self-consistent, semi-numerical4
simulation, specifically optimized to predict the high-redshift 21-
cm signal. Through a combination of the excursion-set formal-
ism and perturbation theory, our code can generate full 3D re-
alizations of the density, ionization, velocity, spin temperature,
and ultimately 21-cm brightness temperature fields. Although the
physical processes are treated with approximate methods, our
results agree well with a state-of-the-art hydrodynamic simula-
tion of reionization. However, unlike numerical simulations, re-
alizations are computationally cheap and can be generated in a
matter of minutes on a single processor, with modest memory
requirements. Most importantly, our code is publicly available
at http://www.astro.princeton.edu/∼mesinger/Sim.html. We name
our simulation 21cmFAST.

Semi-Numerical approaches have already proved invaluable
in reionization studies (Zahn et al. 2005; Mesinger & Furlanetto
2007; Geil & Wyithe 2008; Alvarez et al. 2009; Choudhury et al.
2009; Thomas et al. 2009). Indeed, 21cmFAST is a more special-
ized version of our previous code, DexM (Mesinger & Furlanetto
2007; hereafter MF07). The difference between the two is that
21cmFAST bypasses the halo finding algorithm, resulting in a
faster code with a larger dynamic range and more modest memory
requirements. In this work, we also introduce some new additions
to our code, mainly to compute the spin temperature.

In §2, we compare predictions from 21cmFAST with those
from hydrodynamic simulations of the various physical compo-
nents comprising the 21-cm signal in the post heating regime. Den-
sity, ionization, peculiar velocity gradient, and full 21-cm bright-
ness temperature fields are explored in §2.1, §2.2, §2.3, §2.4, re-
spectively. In §3, we introduce our method for computing the spin
temperature fields, with results from the complete calculation (in-
cluding the spin temperature) presented in §3.3. Finally in §4, we
summarize our findings.

Unless stated otherwise, we quote all quantities in comov-
ing units. We adopt the background cosmological parameters (ΩΛ,
ΩM, Ωb, n, σ8, H0) = (0.72, 0.28, 0.046, 0.96, 0.82, 70 km s−1

Mpc−1), matching the five–year results of the WMAP satellite
(Komatsu et al. 2009).

4 By “semi-numerical” we mean using more approximate physics than nu-
merical simulations, but capable of independently generating 3D realiza-
tions.

2 21-CM TEMPERATURE FLUCTUATIONS POST
HEATING (TS ≫ Tγ )

Our ultimate goal is to compute the 21 cm background, which re-
quires a number of physics components. To identify them, note that
the offset of the 21-cm brightness temperature from the CMB tem-
perature, Tγ , along a line of sight (LOS) at observed frequency ν,
can be written as (c.f. Furlanetto et al. 2006):

δTb(ν) =
TS − Tγ

1 + z
(1− e−τν0 ) ≈

27xHI(1 + δnl)

(

H
dvr/dr +H

)(

1−
Tγ

TS

)

×

(

1 + z
10

0.15
ΩMh2

)1/2 (Ωbh
2

0.023

)

mK, (1)

where TS is the gas spin temperature, τν0 is the optical depth at the
21-cm frequency ν0, δnl(x, z) ≡ ρ/ρ̄− 1 is the evolved (Eulerian)
density contrast, H(z) is the Hubble parameter, dvr/dr is the co-
moving gradient of the line of sight component of the comoving ve-
locity, and all quantities are evaluated at redshift z = ν0/ν−1. The
final approximation makes the assumption that that dvr/dr ≪ H ,
which is generally true for the pertinent redshifts and scales, though
we shall return to this issue in §2.3.

In this comparison section, we make the standard, simpli-
fying assumption of working in the post-heating regime: TS ≫
Tγ . For fiducial astrophysical models, this is likely a safe
assumption during the bulk of reionization (Furlanetto 2006;
Chen & Miralda-Escudé 2008; Santos et al. 2008; Baek et al.
2009). We will however revisit this assumption in §3, where we
introduce our method for computing the spin temperature field.

The remaining components of eq. 1 are the density, δnl, the
ionization, xHI, and the velocity gradient, dvr/dr. Below, we study
these in turn, comparing 21cmFAST to the hydrodynamic cosmo-
logical simulation of Trac et al. (2008), using the same initial con-
ditions (ICs). We perform “by-eye” comparisons at various red-
shifts/stages of reionization, as well as one and two-point statis-
tics: the PDFs (smoothed on several scales), and the power spectra.
Since our code is designed to simulate the cosmological 21-cm sig-
nal from neutral hydrogen, we study the regime before the likely
completion of reionization, z ∼

> 7 (though present data is even
consistent with reionization completing at z ∼

<6; Lidz et al. 2007;
Mesinger 2009).

The simulations of Trac et al. (2008) are the current “state-of-
the-art” reionization simulations. They include simultaneous treat-
ment of dark matter (DM) and gas, five-frequency radiative transfer
(RT) on a 5123 grid, and they resolve Mhalo ∼

> 108M⊙ ionizing
sources with ∼

> 40 DM particles in a 143 Mpc box.

2.1 Evolved Density Field

We calculate the evolved density field in the same fashion as in the
“parent” code, DexM, outlined in MF07. In short, we generate den-
sity and velocity ICs in initial (Lagrangian) space, in roughly the
same manner as numerical cosmological simulations. We then ap-
proximate gravitational collapse by moving each initial matter par-
ticle (whose mass is the total mass in the corresponding IC cell) ac-
cording to first-order perturbation theory (Zel’Dovich 1970). First-
order perturbation theory is very computationally convenient as the
displacement field is a separable function of space and time, so
the spatial component need only be computed once for each re-
alization/box. There is no separate treatment of baryons and DM.
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Figure 5. Top panel: Dimensionless power spectra from 21cmFAST, in a
fully neutral universe, in the limit of TS ≫ Tγ . The upper set of curves
were computed including peculiar velocities, while the lower set were com-
puted not including peculiar velocities. Bottom three panels: Ratios of the
dimensionless power spectra with peculiar velocities to those not including
peculiar velocities. The linear regime geometric enhancement of 1.87 is de-
marcated by the upper horizontal dotted line. In all panels, the dot-dashed
blue and dashed green curves were generated from the same ICs in a L = 1
Gpc box, sampled with an initial resolution of ∆x = 0.56 Mpc, with the
evolved density, velocity, and ionization fields generated at lower resolu-
tions of ∆x = 3.3 Mpc (dashed green curves), and 10 Mpc (dot-dashed
blue curves). The solid red curves were generated from a L = 5 Gpc box
with a single resolution of ∆x = 10 Mpc. However, the density field used
for the solid red curves was generated assuming linear evolution, while the
others were generated with first-order perturbation theory (see §2.1).

the limit of TS ≫ Tγ and assuming x̄HI = 1. The solid red curves
correspond to a 5 Gpc box with∆x = 10 Mpc cells, while the dot-
dashed blue and dashed green curves correspond to a 1 Gpc box
with different resolutions. The upper set of curves were computed
including peculiar velocities, while the lower set were computed
not including peculiar velocities. The bottom three panels show the
ratios of the power spectra that include redshift space distortions to
those that do not.

Indeed the red curves in Fig. 5, which were evolved linearly,
accurately capture the enhancement factor of 1.87, shown with a
dotted horizontal line. The other two curves, which include first
order non-linear effects, show an enhancement of power in ex-
cess of the purely geometric factor. From eq. (4), one sees that a
high-value tail in the density distribution resulting from non-linear
evolution would drive a corresponding negative tail in the dvr/dr
distributions, which in turn enhances the 21-cm signal through the
(1/(dvr/dr/H) + 1) term in eq. 1. Although the dvr/dr distri-
butions are zero-mean, the distributions of 1/(dvr/dr/H + 1) are
not. The bias to higher values is further enhanced when weighted
by the local density as in the δTb expression, ∆/(dvr/dr/H +1).
Intuitively, infall in overdense regions causes photons emitted there
to travel farther in order to reach a fixed relative redshift; there-

Figure 6. Ratios of the dimensional power spectra, ¯δTb(z)
2∆2

21(k, z),
computed including peculiar velocities to those not including peculiar ve-
locities. Panels correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65), (7.04,
0.38), and (6.71, 0.20), (top to bottom). Solid red curves are generated from
the hydrodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. The thin solid red curve in the upper panel corresponds to a
fully neutral universe at z = 9. The linear regime geometric enhancement
of 1.87 is demarcated by the upper horizontal dotted line.

fore the optical depth and δTb are increased in δ > 0 regions
(Barkana & Loeb 2005a).

To further explore this effect and compare our results with
simulations, in Fig. 6, we plot the ratio of the dimensional 21-cm
power spectra, ¯δTb(z)

2∆2
21(k, z), computed including peculiar ve-

locities to those not including peculiar velocities. The thin solid red
curve in the upper panel corresponds to a fully neutral universe at
z = 9. The hydrodynamic simulations go down to much smaller
scales than plotted in Fig. 5, which are more non-linear and hence
show a larger enhancement of power, though we confirm that most
of this is due to the evolution in the mean signal, ¯δTb(z)

2.
This enhanced 21-cm power from non-linear peculiar veloci-

ties obviously merits more investigation beyond the scope of this
paper. Therefore we defer further analysis to future work. We cau-
tion however that it is unclear how well we can estimate this en-
hancement, due to the misuse of the 1/(dvr/dr/H+1) term in eq.
(1). This expression assumes that dvr/dr ≪ H(z) and diverges at
dvr/dr = −H(z). To compensate for this behavior, we impose
a maximum value of |dvr/dr| = 0.5H(z), and confirm that our
results are only weakly sensitive to this choice in the ∼ 0.1H(z)
– 0.7H(z) range. Similar misuses of the mapping from real space
to redshift space have already been noted in the context of galaxy
surveys (see Scoccimarro 2004 and references therein). Therefore,
if the user is interested in more accurate predictions of the 21-cm
signal as observed with 21-cm interferometers, we recommend to
turn off the velocity gradient correction in 21cmFAST, and just do
redshift space distortions directly from the velocity field as one of
the many necessary transformations from a comoving simulation
box to a simulated frequency signal (e.g. Harker et al. 2010, Mate-
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Thus one is forced to make compromises: deciding which physical
processes can be ignored, and how the others can be parameterized
and efficiently folded into large-scale models. Furthermore, large-
scale simulations are computationally costly (even when they sacri-
fice completeness for speed by ignoring hydrodynamic processes)
and thus are inefficient in large parameter studies.

On the other hand, analytic models, while more approximate,
are fast and can provide physical insight into the import of vari-
ous processes. However, analytical models are hard-pressed to go
beyond the linear regime, and beyond making fairly simple predic-
tions such as the mean 21-cm signal (Furlanetto 2006), the prob-
ability density function (PDF; Furlanetto et al. 2004a) and power
spectrum (Pritchard & Furlanetto 2007; Barkana 2009). The 21-
cm tomographic signal should be rich in information, accommo-
dating many additional, higher-order statistical probes, such as the
bi-spectrum (Pritchard et al., in preparation), the difference PDF
(Barkana & Loeb 2008), etc.

In this paper, we follow a path of compromise, attempting
to preserve the most useful elements of both analytic and nu-
meric approaches. We introduce a self-consistent, semi-numerical4
simulation, specifically optimized to predict the high-redshift 21-
cm signal. Through a combination of the excursion-set formal-
ism and perturbation theory, our code can generate full 3D re-
alizations of the density, ionization, velocity, spin temperature,
and ultimately 21-cm brightness temperature fields. Although the
physical processes are treated with approximate methods, our
results agree well with a state-of-the-art hydrodynamic simula-
tion of reionization. However, unlike numerical simulations, re-
alizations are computationally cheap and can be generated in a
matter of minutes on a single processor, with modest memory
requirements. Most importantly, our code is publicly available
at http://www.astro.princeton.edu/∼mesinger/Sim.html. We name
our simulation 21cmFAST.

Semi-Numerical approaches have already proved invaluable
in reionization studies (Zahn et al. 2005; Mesinger & Furlanetto
2007; Geil & Wyithe 2008; Alvarez et al. 2009; Choudhury et al.
2009; Thomas et al. 2009). Indeed, 21cmFAST is a more special-
ized version of our previous code, DexM (Mesinger & Furlanetto
2007; hereafter MF07). The difference between the two is that
21cmFAST bypasses the halo finding algorithm, resulting in a
faster code with a larger dynamic range and more modest memory
requirements. In this work, we also introduce some new additions
to our code, mainly to compute the spin temperature.

In §2, we compare predictions from 21cmFAST with those
from hydrodynamic simulations of the various physical compo-
nents comprising the 21-cm signal in the post heating regime. Den-
sity, ionization, peculiar velocity gradient, and full 21-cm bright-
ness temperature fields are explored in §2.1, §2.2, §2.3, §2.4, re-
spectively. In §3, we introduce our method for computing the spin
temperature fields, with results from the complete calculation (in-
cluding the spin temperature) presented in §3.3. Finally in §4, we
summarize our findings.

Unless stated otherwise, we quote all quantities in comov-
ing units. We adopt the background cosmological parameters (ΩΛ,
ΩM, Ωb, n, σ8, H0) = (0.72, 0.28, 0.046, 0.96, 0.82, 70 km s−1

Mpc−1), matching the five–year results of the WMAP satellite
(Komatsu et al. 2009).

4 By “semi-numerical” we mean using more approximate physics than nu-
merical simulations, but capable of independently generating 3D realiza-
tions.

2 21-CM TEMPERATURE FLUCTUATIONS POST
HEATING (TS ≫ Tγ )

Our ultimate goal is to compute the 21 cm background, which re-
quires a number of physics components. To identify them, note that
the offset of the 21-cm brightness temperature from the CMB tem-
perature, Tγ , along a line of sight (LOS) at observed frequency ν,
can be written as (c.f. Furlanetto et al. 2006):

δTb(ν) =
TS − Tγ

1 + z
(1− e−τν0 ) ≈

27xHI(1 + δnl)

(

H
dvr/dr +H

)(

1−
Tγ

TS

)

×

(

1 + z
10

0.15
ΩMh2

)1/2 (Ωbh
2

0.023

)

mK, (1)

where TS is the gas spin temperature, τν0 is the optical depth at the
21-cm frequency ν0, δnl(x, z) ≡ ρ/ρ̄− 1 is the evolved (Eulerian)
density contrast, H(z) is the Hubble parameter, dvr/dr is the co-
moving gradient of the line of sight component of the comoving ve-
locity, and all quantities are evaluated at redshift z = ν0/ν−1. The
final approximation makes the assumption that that dvr/dr ≪ H ,
which is generally true for the pertinent redshifts and scales, though
we shall return to this issue in §2.3.

In this comparison section, we make the standard, simpli-
fying assumption of working in the post-heating regime: TS ≫
Tγ . For fiducial astrophysical models, this is likely a safe
assumption during the bulk of reionization (Furlanetto 2006;
Chen & Miralda-Escudé 2008; Santos et al. 2008; Baek et al.
2009). We will however revisit this assumption in §3, where we
introduce our method for computing the spin temperature field.

The remaining components of eq. 1 are the density, δnl, the
ionization, xHI, and the velocity gradient, dvr/dr. Below, we study
these in turn, comparing 21cmFAST to the hydrodynamic cosmo-
logical simulation of Trac et al. (2008), using the same initial con-
ditions (ICs). We perform “by-eye” comparisons at various red-
shifts/stages of reionization, as well as one and two-point statis-
tics: the PDFs (smoothed on several scales), and the power spectra.
Since our code is designed to simulate the cosmological 21-cm sig-
nal from neutral hydrogen, we study the regime before the likely
completion of reionization, z ∼

> 7 (though present data is even
consistent with reionization completing at z ∼

<6; Lidz et al. 2007;
Mesinger 2009).

The simulations of Trac et al. (2008) are the current “state-of-
the-art” reionization simulations. They include simultaneous treat-
ment of dark matter (DM) and gas, five-frequency radiative transfer
(RT) on a 5123 grid, and they resolve Mhalo ∼

> 108M⊙ ionizing
sources with ∼

> 40 DM particles in a 143 Mpc box.

2.1 Evolved Density Field

We calculate the evolved density field in the same fashion as in the
“parent” code, DexM, outlined in MF07. In short, we generate den-
sity and velocity ICs in initial (Lagrangian) space, in roughly the
same manner as numerical cosmological simulations. We then ap-
proximate gravitational collapse by moving each initial matter par-
ticle (whose mass is the total mass in the corresponding IC cell) ac-
cording to first-order perturbation theory (Zel’Dovich 1970). First-
order perturbation theory is very computationally convenient as the
displacement field is a separable function of space and time, so
the spatial component need only be computed once for each re-
alization/box. There is no separate treatment of baryons and DM.
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Figure 4. PDFs of the comoving LOS derivative of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left) and 5.0 Mpc (right). Solid red curves
are generated from the hydrodynamic simulation, while the dashed blue curves are generated by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7
are shown top to bottom. All smoothing was performed with a real-space, top-hat filter. The dotted magenta curves were generated on comparable scales by
21cmFAST with different initial conditions; however, they assume linear evolution of the density field, instead of the perturbation theory approach (see §2.1).

2.3 Peculiar Velocity Gradient Field

Redshift space distortions, accounted for with the dvr/dr term in
eq. (1)7, are often ignored when simulating the 21-cm signal. In
the linear regime, redshift space distortions of the 21-cm field are
similar to the well-studied Kaiser effect (e.g. Kaiser 1987), and the
power spectrum of fluctuations is enhanced on all scales by a ge-
ometric factor of 1.87 (Bharadwaj & Ali 2004; Barkana & Loeb
2005a). However, the small scale overdensities, where redshift
space distortions are most important, are also the regions whose
21-cm emission is first erased by “inside-out” reionization. Pre-
liminary studies therefore concluded that redshift space distortions
would only be noticeable before reionization and in its early stages
(McQuinn et al. 2006, MF07). As we are interested in accurately
simulating the 21-cm signal from all cosmological epochs, includ-
ing pre-reionization, here we will compare the velocity gradient
term from 21cmFAST and hydrodynamic simulations.

Using the Zel’Dovich approximation on our 3D realizations,
we can again efficiently move beyond the linear regime into the
quasi-linear regime, and take into account correlations in the veloc-
ity gradient field. In this first-order perturbation theory, the velocity
field can be written as:

v(k, z) =
ik
k2

Ḋ(z)δ(k) , (2)

and so the derivative of the line-of-sight velocity, vr where r for
simplicity is oriented along a basis vector, can be written in k-space
as:

7 Note that this expression is exact, as long as the dvr/dr field is constant
over the width of the 21-cm line and dvr/dr ≪ H(z). Alternately, one
can apply redshift space distortions when converting the comoving signal
from the simulation box to an observed frequency. However, for sake of
consistency, we perform all of our calculations in comoving space.

dvr
dr

(k, z) = ikrvr(k, z) (3)

≈ −
k2
r

k2
Ḋ(z)δnl(k) , (4)

where differentiation is performed in k-space. The last approxima-
tion is used for 21cmFAST, while the first, exact expression is used
for the numerical simulation8.

In Fig. 4 we show the PDFs of the comoving LOS derivative
of vr [in units ofH(z)], smoothed on scale Rfilter = 0.5 Mpc (left)
and 5.0 Mpc (right). Solid red curves are generated from the hy-
drodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7 are
shown top to bottom. We see that our perturbation theory approach
again does remarkably well in reproducing results from the hydro-
dynamic simulation. The velocity gradients agree even better than
the density fields, since the velocity field is coherent over larger
scales. The shape of the distributions are noticeably non-linear on
small scales and late times. The curves resemble PDFs of the sign-
flipped non-linear density field, δnl, which is understandable from
eq. (4). The dotted magenta curves in the bottom right panels were
generated on comparable scales by 21cmFAST with different ini-
tial conditions; however, they assume linear evolution of the den-
sity field, instead of the perturbation theory approach. As expected,
linear evolution results in a symmetric Gaussian PDF.

Do we reproduce the geometric, scale-free enhancement
of the power spectrum on linear scales? In the top panel
of Fig. 5, we plot dimensionless 21-cm power spectra,
∆2

21(k, z) = k3/(2π2V ) ⟨|δ21(k, z)|2⟩k where δ21(x, z) ≡
δTb(x, z)/ ¯δTb(z)− 1. The spectra are generated by 21cmFAST in

8 There is an inconsistency in the above equations for 21cmFAST, as eq.
(4) is applied to the non-linear density field, whereas eq. (2) assumes a linear
δ. Nevertheless, as we shall show below, eq. (4) reproduces the non-linear
velocity gradient field from the numerical simulations remarkably well.
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Figure 4. PDFs of the comoving LOS derivative of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left) and 5.0 Mpc (right). Solid red curves
are generated from the hydrodynamic simulation, while the dashed blue curves are generated by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7
are shown top to bottom. All smoothing was performed with a real-space, top-hat filter. The dotted magenta curves were generated on comparable scales by
21cmFAST with different initial conditions; however, they assume linear evolution of the density field, instead of the perturbation theory approach (see §2.1).

2.3 Peculiar Velocity Gradient Field

Redshift space distortions, accounted for with the dvr/dr term in
eq. (1)7, are often ignored when simulating the 21-cm signal. In
the linear regime, redshift space distortions of the 21-cm field are
similar to the well-studied Kaiser effect (e.g. Kaiser 1987), and the
power spectrum of fluctuations is enhanced on all scales by a ge-
ometric factor of 1.87 (Bharadwaj & Ali 2004; Barkana & Loeb
2005a). However, the small scale overdensities, where redshift
space distortions are most important, are also the regions whose
21-cm emission is first erased by “inside-out” reionization. Pre-
liminary studies therefore concluded that redshift space distortions
would only be noticeable before reionization and in its early stages
(McQuinn et al. 2006, MF07). As we are interested in accurately
simulating the 21-cm signal from all cosmological epochs, includ-
ing pre-reionization, here we will compare the velocity gradient
term from 21cmFAST and hydrodynamic simulations.

Using the Zel’Dovich approximation on our 3D realizations,
we can again efficiently move beyond the linear regime into the
quasi-linear regime, and take into account correlations in the veloc-
ity gradient field. In this first-order perturbation theory, the velocity
field can be written as:

v(k, z) =
ik
k2

Ḋ(z)δ(k) , (2)

and so the derivative of the line-of-sight velocity, vr where r for
simplicity is oriented along a basis vector, can be written in k-space
as:

7 Note that this expression is exact, as long as the dvr/dr field is constant
over the width of the 21-cm line and dvr/dr ≪ H(z). Alternately, one
can apply redshift space distortions when converting the comoving signal
from the simulation box to an observed frequency. However, for sake of
consistency, we perform all of our calculations in comoving space.

dvr
dr

(k, z) = ikrvr(k, z) (3)

≈ −
k2
r

k2
Ḋ(z)δnl(k) , (4)

where differentiation is performed in k-space. The last approxima-
tion is used for 21cmFAST, while the first, exact expression is used
for the numerical simulation8.

In Fig. 4 we show the PDFs of the comoving LOS derivative
of vr [in units ofH(z)], smoothed on scale Rfilter = 0.5 Mpc (left)
and 5.0 Mpc (right). Solid red curves are generated from the hy-
drodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7 are
shown top to bottom. We see that our perturbation theory approach
again does remarkably well in reproducing results from the hydro-
dynamic simulation. The velocity gradients agree even better than
the density fields, since the velocity field is coherent over larger
scales. The shape of the distributions are noticeably non-linear on
small scales and late times. The curves resemble PDFs of the sign-
flipped non-linear density field, δnl, which is understandable from
eq. (4). The dotted magenta curves in the bottom right panels were
generated on comparable scales by 21cmFAST with different ini-
tial conditions; however, they assume linear evolution of the den-
sity field, instead of the perturbation theory approach. As expected,
linear evolution results in a symmetric Gaussian PDF.

Do we reproduce the geometric, scale-free enhancement
of the power spectrum on linear scales? In the top panel
of Fig. 5, we plot dimensionless 21-cm power spectra,
∆2

21(k, z) = k3/(2π2V ) ⟨|δ21(k, z)|2⟩k where δ21(x, z) ≡
δTb(x, z)/ ¯δTb(z)− 1. The spectra are generated by 21cmFAST in

8 There is an inconsistency in the above equations for 21cmFAST, as eq.
(4) is applied to the non-linear density field, whereas eq. (2) assumes a linear
δ. Nevertheless, as we shall show below, eq. (4) reproduces the non-linear
velocity gradient field from the numerical simulations remarkably well.

c⃝ 0000 RAS, MNRAS 000, 000–000



21cmFAST 7

Figure 5. Top panel: Dimensionless power spectra from 21cmFAST, in a
fully neutral universe, in the limit of TS ≫ Tγ . The upper set of curves
were computed including peculiar velocities, while the lower set were com-
puted not including peculiar velocities. Bottom three panels: Ratios of the
dimensionless power spectra with peculiar velocities to those not including
peculiar velocities. The linear regime geometric enhancement of 1.87 is de-
marcated by the upper horizontal dotted line. In all panels, the dot-dashed
blue and dashed green curves were generated from the same ICs in a L = 1
Gpc box, sampled with an initial resolution of ∆x = 0.56 Mpc, with the
evolved density, velocity, and ionization fields generated at lower resolu-
tions of ∆x = 3.3 Mpc (dashed green curves), and 10 Mpc (dot-dashed
blue curves). The solid red curves were generated from a L = 5 Gpc box
with a single resolution of ∆x = 10 Mpc. However, the density field used
for the solid red curves was generated assuming linear evolution, while the
others were generated with first-order perturbation theory (see §2.1).

the limit of TS ≫ Tγ and assuming x̄HI = 1. The solid red curves
correspond to a 5 Gpc box with∆x = 10 Mpc cells, while the dot-
dashed blue and dashed green curves correspond to a 1 Gpc box
with different resolutions. The upper set of curves were computed
including peculiar velocities, while the lower set were computed
not including peculiar velocities. The bottom three panels show the
ratios of the power spectra that include redshift space distortions to
those that do not.

Indeed the red curves in Fig. 5, which were evolved linearly,
accurately capture the enhancement factor of 1.87, shown with a
dotted horizontal line. The other two curves, which include first
order non-linear effects, show an enhancement of power in ex-
cess of the purely geometric factor. From eq. (4), one sees that a
high-value tail in the density distribution resulting from non-linear
evolution would drive a corresponding negative tail in the dvr/dr
distributions, which in turn enhances the 21-cm signal through the
(1/(dvr/dr/H) + 1) term in eq. 1. Although the dvr/dr distri-
butions are zero-mean, the distributions of 1/(dvr/dr/H + 1) are
not. The bias to higher values is further enhanced when weighted
by the local density as in the δTb expression, ∆/(dvr/dr/H +1).
Intuitively, infall in overdense regions causes photons emitted there
to travel farther in order to reach a fixed relative redshift; there-

Figure 6. Ratios of the dimensional power spectra, ¯δTb(z)
2∆2

21(k, z),
computed including peculiar velocities to those not including peculiar ve-
locities. Panels correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65), (7.04,
0.38), and (6.71, 0.20), (top to bottom). Solid red curves are generated from
the hydrodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. The thin solid red curve in the upper panel corresponds to a
fully neutral universe at z = 9. The linear regime geometric enhancement
of 1.87 is demarcated by the upper horizontal dotted line.

fore the optical depth and δTb are increased in δ > 0 regions
(Barkana & Loeb 2005a).

To further explore this effect and compare our results with
simulations, in Fig. 6, we plot the ratio of the dimensional 21-cm
power spectra, ¯δTb(z)

2∆2
21(k, z), computed including peculiar ve-

locities to those not including peculiar velocities. The thin solid red
curve in the upper panel corresponds to a fully neutral universe at
z = 9. The hydrodynamic simulations go down to much smaller
scales than plotted in Fig. 5, which are more non-linear and hence
show a larger enhancement of power, though we confirm that most
of this is due to the evolution in the mean signal, ¯δTb(z)

2.
This enhanced 21-cm power from non-linear peculiar veloci-

ties obviously merits more investigation beyond the scope of this
paper. Therefore we defer further analysis to future work. We cau-
tion however that it is unclear how well we can estimate this en-
hancement, due to the misuse of the 1/(dvr/dr/H+1) term in eq.
(1). This expression assumes that dvr/dr ≪ H(z) and diverges at
dvr/dr = −H(z). To compensate for this behavior, we impose
a maximum value of |dvr/dr| = 0.5H(z), and confirm that our
results are only weakly sensitive to this choice in the ∼ 0.1H(z)
– 0.7H(z) range. Similar misuses of the mapping from real space
to redshift space have already been noted in the context of galaxy
surveys (see Scoccimarro 2004 and references therein). Therefore,
if the user is interested in more accurate predictions of the 21-cm
signal as observed with 21-cm interferometers, we recommend to
turn off the velocity gradient correction in 21cmFAST, and just do
redshift space distortions directly from the velocity field as one of
the many necessary transformations from a comoving simulation
box to a simulated frequency signal (e.g. Harker et al. 2010, Mate-
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もう一つの図には dimensionalなパワースペクトルを描いてある。ここ
では流体シュミレーションの結果と比較している。赤がシュミレーション
で青が 21cmFAST。スモールスケールになると二つの違いが顕著になる。
これは、特異速度の計算がスモールスケールでよくないことに加えて、イ
オン化領域の取り扱いからくる違いも含まれている。イオン化領域の問題
点については次の章で触れる。
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dvr
dr 無しのパワースペクトル
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0.6 21cm power spectrum

　以上のようなモデルや仮定を用いて、21cmFSATは 21cm線のパワー
スペクトルについて計算する。結論を先にいえば、パワースペクトルを
流体シュミレーションの結果と比較すると大スケールにおいて特に一致す
る。小スケールにおいては比較すると基本的に小さな値を示す。違いがあ
るとはいえ、だいたい 10％程度のズレである。この小スケールの違いは
イオン化領域に起因する。Zahn et al (2010)で FFRTと流体シュミレー
ションの結果を比較しているので詳しくはそちらを参考にしてほしい。簡
単にいえば、21cmFASTは小スケールにおけるイオン化と密度場の相関
について過大評価してしまっている。
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Figure 5. Top panel: Dimensionless power spectra from 21cmFAST, in a
fully neutral universe, in the limit of TS ≫ Tγ . The upper set of curves
were computed including peculiar velocities, while the lower set were com-
puted not including peculiar velocities. Bottom three panels: Ratios of the
dimensionless power spectra with peculiar velocities to those not including
peculiar velocities. The linear regime geometric enhancement of 1.87 is de-
marcated by the upper horizontal dotted line. In all panels, the dot-dashed
blue and dashed green curves were generated from the same ICs in a L = 1
Gpc box, sampled with an initial resolution of ∆x = 0.56 Mpc, with the
evolved density, velocity, and ionization fields generated at lower resolu-
tions of ∆x = 3.3 Mpc (dashed green curves), and 10 Mpc (dot-dashed
blue curves). The solid red curves were generated from a L = 5 Gpc box
with a single resolution of ∆x = 10 Mpc. However, the density field used
for the solid red curves was generated assuming linear evolution, while the
others were generated with first-order perturbation theory (see §2.1).

the limit of TS ≫ Tγ and assuming x̄HI = 1. The solid red curves
correspond to a 5 Gpc box with∆x = 10 Mpc cells, while the dot-
dashed blue and dashed green curves correspond to a 1 Gpc box
with different resolutions. The upper set of curves were computed
including peculiar velocities, while the lower set were computed
not including peculiar velocities. The bottom three panels show the
ratios of the power spectra that include redshift space distortions to
those that do not.

Indeed the red curves in Fig. 5, which were evolved linearly,
accurately capture the enhancement factor of 1.87, shown with a
dotted horizontal line. The other two curves, which include first
order non-linear effects, show an enhancement of power in ex-
cess of the purely geometric factor. From eq. (4), one sees that a
high-value tail in the density distribution resulting from non-linear
evolution would drive a corresponding negative tail in the dvr/dr
distributions, which in turn enhances the 21-cm signal through the
(1/(dvr/dr/H) + 1) term in eq. 1. Although the dvr/dr distri-
butions are zero-mean, the distributions of 1/(dvr/dr/H + 1) are
not. The bias to higher values is further enhanced when weighted
by the local density as in the δTb expression, ∆/(dvr/dr/H +1).
Intuitively, infall in overdense regions causes photons emitted there
to travel farther in order to reach a fixed relative redshift; there-

Figure 6. Ratios of the dimensional power spectra, ¯δTb(z)
2∆2

21(k, z),
computed including peculiar velocities to those not including peculiar ve-
locities. Panels correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65), (7.04,
0.38), and (6.71, 0.20), (top to bottom). Solid red curves are generated from
the hydrodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. The thin solid red curve in the upper panel corresponds to a
fully neutral universe at z = 9. The linear regime geometric enhancement
of 1.87 is demarcated by the upper horizontal dotted line.

fore the optical depth and δTb are increased in δ > 0 regions
(Barkana & Loeb 2005a).

To further explore this effect and compare our results with
simulations, in Fig. 6, we plot the ratio of the dimensional 21-cm
power spectra, ¯δTb(z)

2∆2
21(k, z), computed including peculiar ve-

locities to those not including peculiar velocities. The thin solid red
curve in the upper panel corresponds to a fully neutral universe at
z = 9. The hydrodynamic simulations go down to much smaller
scales than plotted in Fig. 5, which are more non-linear and hence
show a larger enhancement of power, though we confirm that most
of this is due to the evolution in the mean signal, ¯δTb(z)

2.
This enhanced 21-cm power from non-linear peculiar veloci-

ties obviously merits more investigation beyond the scope of this
paper. Therefore we defer further analysis to future work. We cau-
tion however that it is unclear how well we can estimate this en-
hancement, due to the misuse of the 1/(dvr/dr/H+1) term in eq.
(1). This expression assumes that dvr/dr ≪ H(z) and diverges at
dvr/dr = −H(z). To compensate for this behavior, we impose
a maximum value of |dvr/dr| = 0.5H(z), and confirm that our
results are only weakly sensitive to this choice in the ∼ 0.1H(z)
– 0.7H(z) range. Similar misuses of the mapping from real space
to redshift space have already been noted in the context of galaxy
surveys (see Scoccimarro 2004 and references therein). Therefore,
if the user is interested in more accurate predictions of the 21-cm
signal as observed with 21-cm interferometers, we recommend to
turn off the velocity gradient correction in 21cmFAST, and just do
redshift space distortions directly from the velocity field as one of
the many necessary transformations from a comoving simulation
box to a simulated frequency signal (e.g. Harker et al. 2010, Mate-
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Figure 4. PDFs of the comoving LOS derivative of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left) and 5.0 Mpc (right). Solid red curves
are generated from the hydrodynamic simulation, while the dashed blue curves are generated by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7
are shown top to bottom. All smoothing was performed with a real-space, top-hat filter. The dotted magenta curves were generated on comparable scales by
21cmFAST with different initial conditions; however, they assume linear evolution of the density field, instead of the perturbation theory approach (see §2.1).

2.3 Peculiar Velocity Gradient Field

Redshift space distortions, accounted for with the dvr/dr term in
eq. (1)7, are often ignored when simulating the 21-cm signal. In
the linear regime, redshift space distortions of the 21-cm field are
similar to the well-studied Kaiser effect (e.g. Kaiser 1987), and the
power spectrum of fluctuations is enhanced on all scales by a ge-
ometric factor of 1.87 (Bharadwaj & Ali 2004; Barkana & Loeb
2005a). However, the small scale overdensities, where redshift
space distortions are most important, are also the regions whose
21-cm emission is first erased by “inside-out” reionization. Pre-
liminary studies therefore concluded that redshift space distortions
would only be noticeable before reionization and in its early stages
(McQuinn et al. 2006, MF07). As we are interested in accurately
simulating the 21-cm signal from all cosmological epochs, includ-
ing pre-reionization, here we will compare the velocity gradient
term from 21cmFAST and hydrodynamic simulations.

Using the Zel’Dovich approximation on our 3D realizations,
we can again efficiently move beyond the linear regime into the
quasi-linear regime, and take into account correlations in the veloc-
ity gradient field. In this first-order perturbation theory, the velocity
field can be written as:

v(k, z) =
ik
k2

Ḋ(z)δ(k) , (2)

and so the derivative of the line-of-sight velocity, vr where r for
simplicity is oriented along a basis vector, can be written in k-space
as:

7 Note that this expression is exact, as long as the dvr/dr field is constant
over the width of the 21-cm line and dvr/dr ≪ H(z). Alternately, one
can apply redshift space distortions when converting the comoving signal
from the simulation box to an observed frequency. However, for sake of
consistency, we perform all of our calculations in comoving space.

dvr
dr

(k, z) = ikrvr(k, z) (3)

≈ −
k2
r

k2
Ḋ(z)δnl(k) , (4)

where differentiation is performed in k-space. The last approxima-
tion is used for 21cmFAST, while the first, exact expression is used
for the numerical simulation8.

In Fig. 4 we show the PDFs of the comoving LOS derivative
of vr [in units ofH(z)], smoothed on scale Rfilter = 0.5 Mpc (left)
and 5.0 Mpc (right). Solid red curves are generated from the hy-
drodynamic simulation, while the dashed blue curves are generated
by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7 are
shown top to bottom. We see that our perturbation theory approach
again does remarkably well in reproducing results from the hydro-
dynamic simulation. The velocity gradients agree even better than
the density fields, since the velocity field is coherent over larger
scales. The shape of the distributions are noticeably non-linear on
small scales and late times. The curves resemble PDFs of the sign-
flipped non-linear density field, δnl, which is understandable from
eq. (4). The dotted magenta curves in the bottom right panels were
generated on comparable scales by 21cmFAST with different ini-
tial conditions; however, they assume linear evolution of the den-
sity field, instead of the perturbation theory approach. As expected,
linear evolution results in a symmetric Gaussian PDF.

Do we reproduce the geometric, scale-free enhancement
of the power spectrum on linear scales? In the top panel
of Fig. 5, we plot dimensionless 21-cm power spectra,
∆2

21(k, z) = k3/(2π2V ) ⟨|δ21(k, z)|2⟩k where δ21(x, z) ≡
δTb(x, z)/ ¯δTb(z)− 1. The spectra are generated by 21cmFAST in

8 There is an inconsistency in the above equations for 21cmFAST, as eq.
(4) is applied to the non-linear density field, whereas eq. (2) assumes a linear
δ. Nevertheless, as we shall show below, eq. (4) reproduces the non-linear
velocity gradient field from the numerical simulations remarkably well.

c⃝ 0000 RAS, MNRAS 000, 000–000

6 Mesinger et al.

Figure 4. PDFs of the comoving LOS derivative of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left) and 5.0 Mpc (right). Solid red curves
are generated from the hydrodynamic simulation, while the dashed blue curves are generated by 21cmFAST. Redshifts corresponding to z = 20, 15, 10, 7
are shown top to bottom. All smoothing was performed with a real-space, top-hat filter. The dotted magenta curves were generated on comparable scales by
21cmFAST with different initial conditions; however, they assume linear evolution of the density field, instead of the perturbation theory approach (see §2.1).

2.3 Peculiar Velocity Gradient Field

Redshift space distortions, accounted for with the dvr/dr term in
eq. (1)7, are often ignored when simulating the 21-cm signal. In
the linear regime, redshift space distortions of the 21-cm field are
similar to the well-studied Kaiser effect (e.g. Kaiser 1987), and the
power spectrum of fluctuations is enhanced on all scales by a ge-
ometric factor of 1.87 (Bharadwaj & Ali 2004; Barkana & Loeb
2005a). However, the small scale overdensities, where redshift
space distortions are most important, are also the regions whose
21-cm emission is first erased by “inside-out” reionization. Pre-
liminary studies therefore concluded that redshift space distortions
would only be noticeable before reionization and in its early stages
(McQuinn et al. 2006, MF07). As we are interested in accurately
simulating the 21-cm signal from all cosmological epochs, includ-
ing pre-reionization, here we will compare the velocity gradient
term from 21cmFAST and hydrodynamic simulations.

Using the Zel’Dovich approximation on our 3D realizations,
we can again efficiently move beyond the linear regime into the
quasi-linear regime, and take into account correlations in the veloc-
ity gradient field. In this first-order perturbation theory, the velocity
field can be written as:

v(k, z) =
ik
k2
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Thus one is forced to make compromises: deciding which physical
processes can be ignored, and how the others can be parameterized
and efficiently folded into large-scale models. Furthermore, large-
scale simulations are computationally costly (even when they sacri-
fice completeness for speed by ignoring hydrodynamic processes)
and thus are inefficient in large parameter studies.

On the other hand, analytic models, while more approximate,
are fast and can provide physical insight into the import of vari-
ous processes. However, analytical models are hard-pressed to go
beyond the linear regime, and beyond making fairly simple predic-
tions such as the mean 21-cm signal (Furlanetto 2006), the prob-
ability density function (PDF; Furlanetto et al. 2004a) and power
spectrum (Pritchard & Furlanetto 2007; Barkana 2009). The 21-
cm tomographic signal should be rich in information, accommo-
dating many additional, higher-order statistical probes, such as the
bi-spectrum (Pritchard et al., in preparation), the difference PDF
(Barkana & Loeb 2008), etc.

In this paper, we follow a path of compromise, attempting
to preserve the most useful elements of both analytic and nu-
meric approaches. We introduce a self-consistent, semi-numerical4
simulation, specifically optimized to predict the high-redshift 21-
cm signal. Through a combination of the excursion-set formal-
ism and perturbation theory, our code can generate full 3D re-
alizations of the density, ionization, velocity, spin temperature,
and ultimately 21-cm brightness temperature fields. Although the
physical processes are treated with approximate methods, our
results agree well with a state-of-the-art hydrodynamic simula-
tion of reionization. However, unlike numerical simulations, re-
alizations are computationally cheap and can be generated in a
matter of minutes on a single processor, with modest memory
requirements. Most importantly, our code is publicly available
at http://www.astro.princeton.edu/∼mesinger/Sim.html. We name
our simulation 21cmFAST.

Semi-Numerical approaches have already proved invaluable
in reionization studies (Zahn et al. 2005; Mesinger & Furlanetto
2007; Geil & Wyithe 2008; Alvarez et al. 2009; Choudhury et al.
2009; Thomas et al. 2009). Indeed, 21cmFAST is a more special-
ized version of our previous code, DexM (Mesinger & Furlanetto
2007; hereafter MF07). The difference between the two is that
21cmFAST bypasses the halo finding algorithm, resulting in a
faster code with a larger dynamic range and more modest memory
requirements. In this work, we also introduce some new additions
to our code, mainly to compute the spin temperature.

In §2, we compare predictions from 21cmFAST with those
from hydrodynamic simulations of the various physical compo-
nents comprising the 21-cm signal in the post heating regime. Den-
sity, ionization, peculiar velocity gradient, and full 21-cm bright-
ness temperature fields are explored in §2.1, §2.2, §2.3, §2.4, re-
spectively. In §3, we introduce our method for computing the spin
temperature fields, with results from the complete calculation (in-
cluding the spin temperature) presented in §3.3. Finally in §4, we
summarize our findings.

Unless stated otherwise, we quote all quantities in comov-
ing units. We adopt the background cosmological parameters (ΩΛ,
ΩM, Ωb, n, σ8, H0) = (0.72, 0.28, 0.046, 0.96, 0.82, 70 km s−1

Mpc−1), matching the five–year results of the WMAP satellite
(Komatsu et al. 2009).

4 By “semi-numerical” we mean using more approximate physics than nu-
merical simulations, but capable of independently generating 3D realiza-
tions.

2 21-CM TEMPERATURE FLUCTUATIONS POST
HEATING (TS ≫ Tγ )

Our ultimate goal is to compute the 21 cm background, which re-
quires a number of physics components. To identify them, note that
the offset of the 21-cm brightness temperature from the CMB tem-
perature, Tγ , along a line of sight (LOS) at observed frequency ν,
can be written as (c.f. Furlanetto et al. 2006):

δTb(ν) =
TS − Tγ

1 + z
(1− e−τν0 ) ≈

27xHI(1 + δnl)

(

H
dvr/dr +H

)(

1−
Tγ

TS

)

×

(

1 + z
10

0.15
ΩMh2

)1/2 (Ωbh
2

0.023

)

mK, (1)

where TS is the gas spin temperature, τν0 is the optical depth at the
21-cm frequency ν0, δnl(x, z) ≡ ρ/ρ̄− 1 is the evolved (Eulerian)
density contrast, H(z) is the Hubble parameter, dvr/dr is the co-
moving gradient of the line of sight component of the comoving ve-
locity, and all quantities are evaluated at redshift z = ν0/ν−1. The
final approximation makes the assumption that that dvr/dr ≪ H ,
which is generally true for the pertinent redshifts and scales, though
we shall return to this issue in §2.3.

In this comparison section, we make the standard, simpli-
fying assumption of working in the post-heating regime: TS ≫
Tγ . For fiducial astrophysical models, this is likely a safe
assumption during the bulk of reionization (Furlanetto 2006;
Chen & Miralda-Escudé 2008; Santos et al. 2008; Baek et al.
2009). We will however revisit this assumption in §3, where we
introduce our method for computing the spin temperature field.

The remaining components of eq. 1 are the density, δnl, the
ionization, xHI, and the velocity gradient, dvr/dr. Below, we study
these in turn, comparing 21cmFAST to the hydrodynamic cosmo-
logical simulation of Trac et al. (2008), using the same initial con-
ditions (ICs). We perform “by-eye” comparisons at various red-
shifts/stages of reionization, as well as one and two-point statis-
tics: the PDFs (smoothed on several scales), and the power spectra.
Since our code is designed to simulate the cosmological 21-cm sig-
nal from neutral hydrogen, we study the regime before the likely
completion of reionization, z ∼

> 7 (though present data is even
consistent with reionization completing at z ∼

<6; Lidz et al. 2007;
Mesinger 2009).

The simulations of Trac et al. (2008) are the current “state-of-
the-art” reionization simulations. They include simultaneous treat-
ment of dark matter (DM) and gas, five-frequency radiative transfer
(RT) on a 5123 grid, and they resolve Mhalo ∼

> 108M⊙ ionizing
sources with ∼

> 40 DM particles in a 143 Mpc box.

2.1 Evolved Density Field

We calculate the evolved density field in the same fashion as in the
“parent” code, DexM, outlined in MF07. In short, we generate den-
sity and velocity ICs in initial (Lagrangian) space, in roughly the
same manner as numerical cosmological simulations. We then ap-
proximate gravitational collapse by moving each initial matter par-
ticle (whose mass is the total mass in the corresponding IC cell) ac-
cording to first-order perturbation theory (Zel’Dovich 1970). First-
order perturbation theory is very computationally convenient as the
displacement field is a separable function of space and time, so
the spatial component need only be computed once for each re-
alization/box. There is no separate treatment of baryons and DM.
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Figure 8. PDFs of δTb created using eq. (1) for the hydrodynamic simulation (red solid curves), 21cmFAST (blue dashed curves), and MF07 (magenta
dotted curves). Panels correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65), (7.04, 0.38), and (6.71, 0.20), top to bottom. The left panel was generated using
the unfiltered δTb field with cell length ∆x = 143/256 Mpc (effectively R ∼ 0.35 Mpc), while the right panel was generated from the δTb field, filtered on
Rfilter = 5Mpc scales. All fields invoke the simplifying assumption of TS ≫ Tγ .

Figure 9. Comparison of 21-cm power spectra obtained from the hydrody-
namic cosmological simulation (solid red curves), and the semi-numerical
algorithms in MF07 (dotted magenta curves) and 21cmFAST (dashed blue
curves). Sets of curves correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65),
(7.04, 0.38), and (6.71, 0.20), top to bottom at high k.

In Fig. 9, we compare the power spectra of these δTb boxes.
Again, the hydrodynamic simulation is shown with red solid
curves, MF07 is shown with dotted magenta curves, and 21cm-
FAST is shown with dashed blue curves.

At all scales, the power spectra agree with each other at the 10s

of percent level12. At moderate to large scales, agreement is best,
with MF07 performing slightly better than the FFRT algorithm
which is default in 21cmFAST 13 On smaller-scales, MF07 predicts
too much power, while 21cmFAST under-predicts the power. It was
shown in Zahn et al. (2010) that the FFRT ionization algorithm
used in 21cmFAST over-predicts the correlation of the ionization
and density fields on small scales, due to the fact that it operates
directly on the evolved density field. This strong cross-correlation
results in an under-prediction of 21-cm power on these scales. The
converse is true of the MF07 scheme, which although using discrete
source halos, paints entire filtered regions as ionized, thus under-
predicting the cross-correlation of the ionization and density fields.
The optimal configuration for accurately estimating the 21-cm sig-
nal semi-numerically is the FFRT-S scheme discussed in Zahn et al.
(2010), set as default in the publicly-available DexM14.

Most importantly, the model uncertainties of the semi-
numerical schemes are smaller than the evolution due to reioniza-
tion over a range ∆x̄HI ∼ 0.2. Naively therefore, one can predict
that the semi-numerical schemes are accurate enough to estimate
x̄HI from the power spectra to ± ∼

< 0.1, or even better if the be-
havior of the models are understood. However, there are many as-
trophysical uncertainties associated with prescriptions for sources
and sinks of ionizing photons during the epoch of reionization, and

12 The semi-numerical simulations show an increase in power approach-
ing the Nyquist frequency, which is most likely just shot noise of our 2563
boxes. The numerical simulations do not show the same upturn, since they
were generated on higher resolution grids (5123 for the RT and 7683 for
the density), and subsequently smoothed down to 2563 ; numerical simu-
lations generated directly on the same scale 2563 grids show similar shot
noise upturns in power on these scales (see Fig. 7 in Zahn et al. 2010).
13 Note that the FFRT results shown here are not precisely analogous to
those in Zahn et al. (2010), since there the evolved density field was taken
from an N-body simulation, where in 21cmFAST, we self-consistently gen-
erate the density field according to §2.1.
14 http://www.astro.princeton.edu/ mesinger/DexM.html
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the unfiltered δTb field with cell length ∆x = 143/256 Mpc (effectively R ∼ 0.35 Mpc), while the right panel was generated from the δTb field, filtered on
Rfilter = 5Mpc scales. All fields invoke the simplifying assumption of TS ≫ Tγ .

Figure 9. Comparison of 21-cm power spectra obtained from the hydrody-
namic cosmological simulation (solid red curves), and the semi-numerical
algorithms in MF07 (dotted magenta curves) and 21cmFAST (dashed blue
curves). Sets of curves correspond to (z, x̄HI) = (9.00, 0.86), (7.73, 0.65),
(7.04, 0.38), and (6.71, 0.20), top to bottom at high k.

In Fig. 9, we compare the power spectra of these δTb boxes.
Again, the hydrodynamic simulation is shown with red solid
curves, MF07 is shown with dotted magenta curves, and 21cm-
FAST is shown with dashed blue curves.

At all scales, the power spectra agree with each other at the 10s

of percent level12. At moderate to large scales, agreement is best,
with MF07 performing slightly better than the FFRT algorithm
which is default in 21cmFAST 13 On smaller-scales, MF07 predicts
too much power, while 21cmFAST under-predicts the power. It was
shown in Zahn et al. (2010) that the FFRT ionization algorithm
used in 21cmFAST over-predicts the correlation of the ionization
and density fields on small scales, due to the fact that it operates
directly on the evolved density field. This strong cross-correlation
results in an under-prediction of 21-cm power on these scales. The
converse is true of the MF07 scheme, which although using discrete
source halos, paints entire filtered regions as ionized, thus under-
predicting the cross-correlation of the ionization and density fields.
The optimal configuration for accurately estimating the 21-cm sig-
nal semi-numerically is the FFRT-S scheme discussed in Zahn et al.
(2010), set as default in the publicly-available DexM14.

Most importantly, the model uncertainties of the semi-
numerical schemes are smaller than the evolution due to reioniza-
tion over a range ∆x̄HI ∼ 0.2. Naively therefore, one can predict
that the semi-numerical schemes are accurate enough to estimate
x̄HI from the power spectra to ± ∼

< 0.1, or even better if the be-
havior of the models are understood. However, there are many as-
trophysical uncertainties associated with prescriptions for sources
and sinks of ionizing photons during the epoch of reionization, and

12 The semi-numerical simulations show an increase in power approach-
ing the Nyquist frequency, which is most likely just shot noise of our 2563
boxes. The numerical simulations do not show the same upturn, since they
were generated on higher resolution grids (5123 for the RT and 7683 for
the density), and subsequently smoothed down to 2563 ; numerical simu-
lations generated directly on the same scale 2563 grids show similar shot
noise upturns in power on these scales (see Fig. 7 in Zahn et al. 2010).
13 Note that the FFRT results shown here are not precisely analogous to
those in Zahn et al. (2010), since there the evolved density field was taken
from an N-body simulation, where in 21cmFAST, we self-consistently gen-
erate the density field according to §2.1.
14 http://www.astro.princeton.edu/ mesinger/DexM.html
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0.1 はじめに
この章では 21cmFASTにおいて用いられる、再イオン化のモデルや計

算方法についてまとめる。21cmFASTとは再電離期（EoR）の準数値シュ
ミレーションの一つである。21cmFASTでは計算を流体シュミレーショ
ンよりも早くするために、様々な近似や仮定が用いられている。現在の最
新ヴァージョンでは、21cm線のパワースペクトルの計算を最短３時間で
行うことができる。この後の章では密度場、イオン化領域、特異速度の三
つについて詳しく述べる。

P21 = δT̄b(z)
2∆2

21(k, z) (1)

=
k3

2πV
δT̄b(z)

2⟨|δ21(k, z)|2⟩k (2)

δ21(x, z) ≡ δTb(x, z)

δT̄b(z)
− 1 (3)

0.2 基本的なこと
21cmFASTは 21cm lineのパワースペクトルを計算することがとりあ

えずの目的となる。パワースペクトルの計算は輝度温度揺らぎから導かれ
る。視線方向の周波数νに対応する輝度温度を、

δTb(ν) =
Ts − Tγ

1 + z
(1− e−τν0 )

≈ 27xHI(1 + δnl)(
H

dvr/dr +H
(1− Tγ

Ts
)

×(
1 + z

10

0.15

ΩMh2
)
1
2 (

Ωbh2

0.023
)mK (4)

と定義する。この式の中にはスピン温度が用いられている。21cmFAST

の計算ではスピン温度はCMB温度に比べて十分大きいという近似を用い
る。(Ts ≫ Tγ)この近似は再イオン化後期になると (z=15くらい)X線によ
る加熱が強く、スピン温度はガスの温度とともに急激に上昇し、そのとき
CMB温度を遥かに超えてしまうという宇宙の熱進化に則ったものである。
この近似によって、輝度温度がスピン温度や CMB温度によらなくなる。
そうなると輝度温度の計算で問題になるのは（１）式中の xHI , δnl, dvr/dr

である。これからの章ではこの三つの計算について 21cmFASTでどのよ
うに行われているかみていく。

1

power spectrum の定義

21cm power spectrum



3.スピン温度をきちんと計算する場合 



21cmFAST useTs

• spin temperature を計算する 

• 前のionized fieldでneutralと判定された領域についてイオン化率を計算 

• UVに加えて、X-rayもionizing に寄与する 

• 前のionized fieldでfull ionizedやpartially ionizedとされたとことはTsに
ついて近似を用いたまま

スピン温度をきちんと計算する場合についてみていく



Spin temperature

collision coupling coefficient

ただし T↵ ' TK

A_10 : Einstein coefficient 
n_i : number density of spices (HⅠ,e,p)  

Wouthuysen Field coupling coefficient

S_α : correction factor 
J_α : Lyman α back ground flux

κ : scattering rate̶Zygelman(2005), Furlanetto & Furlanetto(2007)



ionizing fraction&kinetic temperature
ionizing fraction と kinetic temperature の時間発展式

z : 興味のあるred shift 
z’ : 任意のred shift

Λ_ion : ionization rate per baryon 
C : clumping factor 
α_A : case-A recombination coefficient 
f_H : hydrogen number fraction
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it will likely be these which regulate the achievable constraints on
x̄HI. Therefore it is imperative for models to be fast and be able
to span large regions of parameter space. A single 21cmFAST re-
alization of the δTb fields shown in this section (generated from
15363 ICs) takes ∼ 30 minutes to compute on a single-processor
computer.

3 THE SPIN TEMPERATURE

We now relax the requirement in §2 of TS ≫ Tγ , and derive the
full 21-cm brightness temperature offset from eq. (1), including the
spin temperature field. As mentioned previously, models predict
that the heating epoch concluded well before the bulk of reioniza-
tion, at z ≫ 10 (Furlanetto 2006; Chen & Miralda-Escudé 2008;
Santos et al. 2008; Baek et al. 2009). However, the second gener-
ation 21-cm interferometers, such as SKA, might be able to peak
into this high-redshift regime of the dark ages. Furthermore, the
astrophysical quantities at high-z are uncertain, and we do not re-
ally know how robust is the assumption of TS ≫ Tγ even during
the early stages of reionization. Therefore, for many applications,
especially parameter studies, it is important to compute the spin
temperature field. Unfortunately, there is currently no numerical
simulation which includes the computationally expensive radiative
transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
see the recent work of Baek et al. 2010, who perform RT simula-
tions on a small subset of sources, withM ∼

> 1010M⊙). Therefore
we cannot directly compare our the spin temperature fields to nu-
merical simulations.

Our derivations in this section are similar to other semi-
analytic models (Furlanetto 2006; Pritchard & Furlanetto 2007;
Santos et al. 2008). However, unlike Santos et al. (2008) and
Santos et al. (2009), we do not explicitly resolve the halo field as
an intermediary step. Instead we operate directly on the evolved
density fields, using excursion set formalism to estimate the mean
number of sources inside spherical shells corresponding to some
higher redshift. As discussed above, bypassing the halo field allows
the code to be faster, with modest memory requirements. Below we
go through our formalism in detail.

The spin temperature can be written as (e.g. Furlanetto et al.
2006):

T−1
S =

T−1
γ + xαT−1

α + xcT
−1
K

1 + xα + xc
(5)

where TK is the kinetic temperature of the gas, and Tα is the color
temperature, which is closely coupled to the kinetic gas tempera-
ture, Tα ≈ TK (Field 1959). There are two coupling coefficients
in the above equation. The collisional coupling coefficient can be
written as:

xc =
0.0628 K
A10Tγ

[

nHIκ
HH
1−0(TK) + neκ

eH
1−0(TK) + npκ

pH
1−0(TK)

]

,

(6)
where A10 = 2.85 × 10−15 s−1 is the spontaneous
emission coefficient, nHI, ne, and np are the number den-
sity of neutral hydrogen, free electrons, and protons respec-
tively, and κHH

1−0(TK), κeH
1−0(TK), and κpH

1−0(TK) are taken
from Zygelman (2005), Furlanetto & Furlanetto (2007), and
Furlanetto & Furlanetto (2007), respectively. The Wouthuysen-

Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient can
be written as:

xα = 1.7× 1011(1 + z)−1SαJα , (7)

where Sα is a correction factor of order unity involving detailed
atomic physics, and Jα is the Lyman α background flux in units
of pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to
Hirata (2006).

According to the above equations, there are two main fields
governing the spin temperature: (1) the kinetic temperature of the
gas, TK(x, z), and (2) the Lyα background, Jα(x, z). We address
these in §3.1 and §3.2, respectively.

3.1 The Kinetic Temperature

3.1.1 Evolution Equations

To calculate the kinetic temperature, one must keep track of the in-
homogeneous heating history of the gas. We begin by writing down
the evolution equation for TK(x, z) and the local ionized fraction in
the “neutral” (i.e. outside of the ionized regions discussed in § 2.2)
IGM, xe(x, z):

dxe(x, z′)

dz′
=

dt
dz′

[

Λion − αACx2
enbfH

]

, (8)

dTK(x, z
′)

dz′
=

2
3kB(1 + xe)

dt
dz′

∑

p

ϵp

+
2TK

3nb

dnb

dz′
−

TK

1 + xe

dxe

dz′
, (9)

where nb = n̄b,0(1 + z′)3[1 + δnl(x, z
′)] is the total (H +

He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
fraction16, and we distinguish between the output redshift of in-
terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z

′) ≈
δnl(x, z)D(z′)/D(z), where D(z) is the linear growth factor.
In principle, we should follow the non-linear redshift evolution
of each cell’s density, δnl(x, z′). However, linearly extrapolating
backwards from z is a good approximation, considering that the

15 Note that our notation is different than that in Furlanetto (2006) and
Pritchard & Furlanetto (2007), who present heating and ionization rates per
proper volume.
16 Equation (8) ignores Helium recombinations, which is a good approx-
imation given that most He recombining photons will cause ionizations of
HI or HeI.
17 For clarity of presentation, we will only explicitly show dependent vari-
ables of functions on the left hand side of equations. Where is is obvious,
we also do not explicitly show dependences on (x, z′).
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it will likely be these which regulate the achievable constraints on
x̄HI. Therefore it is imperative for models to be fast and be able
to span large regions of parameter space. A single 21cmFAST re-
alization of the δTb fields shown in this section (generated from
15363 ICs) takes ∼ 30 minutes to compute on a single-processor
computer.

3 THE SPIN TEMPERATURE

We now relax the requirement in §2 of TS ≫ Tγ , and derive the
full 21-cm brightness temperature offset from eq. (1), including the
spin temperature field. As mentioned previously, models predict
that the heating epoch concluded well before the bulk of reioniza-
tion, at z ≫ 10 (Furlanetto 2006; Chen & Miralda-Escudé 2008;
Santos et al. 2008; Baek et al. 2009). However, the second gener-
ation 21-cm interferometers, such as SKA, might be able to peak
into this high-redshift regime of the dark ages. Furthermore, the
astrophysical quantities at high-z are uncertain, and we do not re-
ally know how robust is the assumption of TS ≫ Tγ even during
the early stages of reionization. Therefore, for many applications,
especially parameter studies, it is important to compute the spin
temperature field. Unfortunately, there is currently no numerical
simulation which includes the computationally expensive radiative
transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
see the recent work of Baek et al. 2010, who perform RT simula-
tions on a small subset of sources, withM ∼

> 1010M⊙). Therefore
we cannot directly compare our the spin temperature fields to nu-
merical simulations.

Our derivations in this section are similar to other semi-
analytic models (Furlanetto 2006; Pritchard & Furlanetto 2007;
Santos et al. 2008). However, unlike Santos et al. (2008) and
Santos et al. (2009), we do not explicitly resolve the halo field as
an intermediary step. Instead we operate directly on the evolved
density fields, using excursion set formalism to estimate the mean
number of sources inside spherical shells corresponding to some
higher redshift. As discussed above, bypassing the halo field allows
the code to be faster, with modest memory requirements. Below we
go through our formalism in detail.

The spin temperature can be written as (e.g. Furlanetto et al.
2006):

T−1
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T−1
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−1
K

1 + xα + xc
(5)

where TK is the kinetic temperature of the gas, and Tα is the color
temperature, which is closely coupled to the kinetic gas tempera-
ture, Tα ≈ TK (Field 1959). There are two coupling coefficients
in the above equation. The collisional coupling coefficient can be
written as:
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where A10 = 2.85 × 10−15 s−1 is the spontaneous
emission coefficient, nHI, ne, and np are the number den-
sity of neutral hydrogen, free electrons, and protons respec-
tively, and κHH
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1−0(TK) are taken
from Zygelman (2005), Furlanetto & Furlanetto (2007), and
Furlanetto & Furlanetto (2007), respectively. The Wouthuysen-

Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient can
be written as:

xα = 1.7× 1011(1 + z)−1SαJα , (7)

where Sα is a correction factor of order unity involving detailed
atomic physics, and Jα is the Lyman α background flux in units
of pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to
Hirata (2006).

According to the above equations, there are two main fields
governing the spin temperature: (1) the kinetic temperature of the
gas, TK(x, z), and (2) the Lyα background, Jα(x, z). We address
these in §3.1 and §3.2, respectively.

3.1 The Kinetic Temperature

3.1.1 Evolution Equations

To calculate the kinetic temperature, one must keep track of the in-
homogeneous heating history of the gas. We begin by writing down
the evolution equation for TK(x, z) and the local ionized fraction in
the “neutral” (i.e. outside of the ionized regions discussed in § 2.2)
IGM, xe(x, z):
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where nb = n̄b,0(1 + z′)3[1 + δnl(x, z
′)] is the total (H +

He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
fraction16, and we distinguish between the output redshift of in-
terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z
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δnl(x, z)D(z′)/D(z), where D(z) is the linear growth factor.
In principle, we should follow the non-linear redshift evolution
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backwards from z is a good approximation, considering that the
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16 Equation (8) ignores Helium recombinations, which is a good approx-
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alization of the δTb fields shown in this section (generated from
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We now relax the requirement in §2 of TS ≫ Tγ , and derive the
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ally know how robust is the assumption of TS ≫ Tγ even during
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especially parameter studies, it is important to compute the spin
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transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
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an intermediary step. Instead we operate directly on the evolved
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number of sources inside spherical shells corresponding to some
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He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
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terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z
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especially parameter studies, it is important to compute the spin
temperature field. Unfortunately, there is currently no numerical
simulation which includes the computationally expensive radiative
transfer of both X-rays and Lyα photons from atomically or molec-
ularly cooled sources required to compute TS numerically (though
see the recent work of Baek et al. 2010, who perform RT simula-
tions on a small subset of sources, withM ∼

> 1010M⊙). Therefore
we cannot directly compare our the spin temperature fields to nu-
merical simulations.

Our derivations in this section are similar to other semi-
analytic models (Furlanetto 2006; Pritchard & Furlanetto 2007;
Santos et al. 2008). However, unlike Santos et al. (2008) and
Santos et al. (2009), we do not explicitly resolve the halo field as
an intermediary step. Instead we operate directly on the evolved
density fields, using excursion set formalism to estimate the mean
number of sources inside spherical shells corresponding to some
higher redshift. As discussed above, bypassing the halo field allows
the code to be faster, with modest memory requirements. Below we
go through our formalism in detail.

The spin temperature can be written as (e.g. Furlanetto et al.
2006):

T−1
S =

T−1
γ + xαT−1

α + xcT
−1
K

1 + xα + xc
(5)

where TK is the kinetic temperature of the gas, and Tα is the color
temperature, which is closely coupled to the kinetic gas tempera-
ture, Tα ≈ TK (Field 1959). There are two coupling coefficients
in the above equation. The collisional coupling coefficient can be
written as:

xc =
0.0628 K
A10Tγ

[

nHIκ
HH
1−0(TK) + neκ

eH
1−0(TK) + npκ

pH
1−0(TK)

]

,

(6)
where A10 = 2.85 × 10−15 s−1 is the spontaneous
emission coefficient, nHI, ne, and np are the number den-
sity of neutral hydrogen, free electrons, and protons respec-
tively, and κHH

1−0(TK), κeH
1−0(TK), and κpH

1−0(TK) are taken
from Zygelman (2005), Furlanetto & Furlanetto (2007), and
Furlanetto & Furlanetto (2007), respectively. The Wouthuysen-

Field (Wouthuysen 1952; Field 1958; WF) coupling coefficient can
be written as:

xα = 1.7× 1011(1 + z)−1SαJα , (7)

where Sα is a correction factor of order unity involving detailed
atomic physics, and Jα is the Lyman α background flux in units
of pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to
Hirata (2006).

According to the above equations, there are two main fields
governing the spin temperature: (1) the kinetic temperature of the
gas, TK(x, z), and (2) the Lyα background, Jα(x, z). We address
these in §3.1 and §3.2, respectively.

3.1 The Kinetic Temperature

3.1.1 Evolution Equations

To calculate the kinetic temperature, one must keep track of the in-
homogeneous heating history of the gas. We begin by writing down
the evolution equation for TK(x, z) and the local ionized fraction in
the “neutral” (i.e. outside of the ionized regions discussed in § 2.2)
IGM, xe(x, z):

dxe(x, z′)

dz′
=

dt
dz′

[

Λion − αACx2
enbfH

]

, (8)

dTK(x, z
′)

dz′
=

2
3kB(1 + xe)

dt
dz′

∑

p

ϵp

+
2TK

3nb

dnb

dz′
−

TK

1 + xe

dxe

dz′
, (9)

where nb = n̄b,0(1 + z′)3[1 + δnl(x, z
′)] is the total (H +

He) baryonic number density at (x, z′), ϵp(x, z′) is the heating
rate per baryon15 for process p in erg s−1, Λion is the ioniza-
tion rate per baryon, αA is the case-A recombination coefficient,
C ≡ ⟨n2⟩/⟨n⟩2 is the clumping factor on the scale of the simula-
tion cell, kB is the Boltzmann constant, fH is the hydrogen number
fraction16, and we distinguish between the output redshift of in-
terest, z, and some arbitrary redshift higher redshift, z′.17 We also
make the accurate assumption that single ionized helium and hy-
drogen are ionized to the same degree, xe(x, z

′), inside the mainly
neutral IGM (e.g. Wyithe & Loeb 2003).

In order to speed-up our calculation, we extrapolate the
cell’s density to higher redshifts assuming linear evolution from
z (the desired output redshift at which we compute the non-
linear density field with perturbation theory): δnl(x, z

′) ≈
δnl(x, z)D(z′)/D(z), where D(z) is the linear growth factor.
In principle, we should follow the non-linear redshift evolution
of each cell’s density, δnl(x, z′). However, linearly extrapolating
backwards from z is a good approximation, considering that the

15 Note that our notation is different than that in Furlanetto (2006) and
Pritchard & Furlanetto (2007), who present heating and ionization rates per
proper volume.
16 Equation (8) ignores Helium recombinations, which is a good approx-
imation given that most He recombining photons will cause ionizations of
HI or HeI.
17 For clarity of presentation, we will only explicitly show dependent vari-
ables of functions on the left hand side of equations. Where is is obvious,
we also do not explicitly show dependences on (x, z′).
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ionizing fraction と kinetic temperature の時間発展式

heating

Hubble expansion structure formationによる断熱的な加
熱や冷却

イオン化によるガス粒子数の変化
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dφe
∗(ν

′
n,x)

dz′
= ε(ν′

n)f∗n̄b,0(1 + δ̄R
′′

nl )
dV
dz′

dfcoll
dt

. (22)

Here ε(ν) is the number of photons produced per Hz per stellar
baryon, and is evaluated at the emitted (rest frame) frequency:

ν′
n = νn

1 + z′

1 + z
. (23)

The upper limit of the redshift integral in eq. (21) corresponds to
the redshift of the next Lyman resonance:

1 + zmax(n) = (1 + z)
1− (n+ 1)−2

1− n−2
. (24)

Following Barkana & Loeb (2005b), we truncate the sum at
nmax = 23, and use their Population II and Population III spectral
models for ε(ν). For computational efficiency, one can rearrange
the terms in eq. (21), placing the sum over Lyman transitions inside
the redshift integral. Substituting in eq. (22) and simplifying, we
obtain:

Jα,∗(x, z) =
f∗n̄b,0c

4π

∫ ∞

z

dz′(1 + z′)3(1 + δ̄R
′′

nl )
dfcoll
dz′

n(z′)
∑

n=2

frecycle(n)ε(ν
′
n) , (25)

where the contribution from the sum over the Lyman transitions is
a function of z′, and is zero at z′ > zmax(n = 2).

The total Lyman α background is then just the sum of the
above components:

Jα,tot(x, z) = Jα,X(x, z) + Jα,∗(x, z) . (26)

In our fiducial model, we do not explicitly take into account other
soft-UV sources of Lyα such as quasars, assuming that these
are sub-dominant to the stellar emission. However, our frame-
work makes it simple to add additional source terms to the inte-
grand of eq. (21), if the user wishes to explore such scenarios (e.g.
Volonteri & Gnedin 2009).

3.3 Results: complete δTb evolution

All of the results in this section are from an L = 1 Gpc simula-
tion, whose ICs are sampled on a 18003 grid, with the final low-
resolution boxes being 3003 (3.33 Mpc cells). Our fiducial model
below assumes f∗ = 0.1, ζX = 1057M−1

⊙ (∼ 1 X-ray photon per
stellar baryon)23, hν0 = 200 eV, α = 1.5, Tvir,min = 104 K for all
sources (X-ray, Lyman α and ionizing), C = 2, Rmax = 30 Mpc,
ζion = 31.524 and the stellar emissivity, ε, of Pop II stars from
Barkana & Loeb (2005b) normalized to 4400 ionizing photons per
stellar baryon. The free parameters pertaining to the spin temper-
ature evolution were chosen to match those in Furlanetto (2006)
and Pritchard & Furlanetto (2007), to facilitate comparison. It is
trivial to customize the code to add, for example, redshift or halo

23 This number was chosen to match the total X-ray luminosity per unit
star formation rate at low redshifts (see Furlanetto 2006 and references
therein for details).
24 This emissivity was chosen so that the midpoint of reionization is z ∼

10 and the end is z ∼ 7.

Figure 10. Evolution of the mean temperatures from 21cmFAST in our
fiducial model. Solid, dashed and dotted curves show TS, TK and Tγ , re-
spectively.

mass dependences to these free parameters. The impressive length
of the above list of uncertain astrophysical parameters (which itself
is only a simplified description of the involved processes) serves
well to underscore the need for a fast, portable code, capable of
quickly scrolling through parameter space.

We also note that the TS calculations outlined in §3 are the
slowest part of the 21cmFAST code (as they involve tracking evo-
lution down to the desired redshift), and therefore should only be
used in the regime where they are important (z ∼

> 17 in our fiducial
model). For example, generating a δTb box, assuming TS ≫ Tγ ,
on a 3003 grid takes only a few minutes on single processor (de-
pending on the choice of higher resolution for sampling the ICs).
However, including the spin temperature field takes an additional
day of computing time. Nevertheless, once the spin temperature
evolution is computed for a given realization at z, all of the inter-
mediate outputs at z′ > z can be used to compute δTb at those
redshifts at no additional computation cost.

Before showing detailed results, it would be useful
to summarize the various evolutionary stages (c.f. §3.1
in Pritchard & Furlanetto 2007). The reader is encour-
aged to reference the evolution of the mean temperatures
shown in Fig. 10 and/or view the full movie available at
http://www.astro.princeton.edu/∼mesinger/Movies/delT.mov,
while reading below.

(i) Collisional coupling; T̄K = T̄S ≤ Tγ : At high redshifts,
the IGM is dense, so the spin temperature is collisionally coupled
to the gas kinetic temperature. The gas temperature is originally
coupled to the CMB, but after decoupling cools adiabatically as ∝
(1+z)−2, faster than the CMB. The 21-cm brightness temperature
offset from the CMB in this regime starts at zero, when all three
temperatures are equal, and then becomes increasingly negative as
TS and TK diverge more and more from Tγ . The fluctuations in δTb

are driven by the density field, as collisional coupling is efficient

c⃝ 0000 RAS, MNRAS 000, 000–000
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x-ray heating
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WF coupling



heating rate
あるxの周囲に半径R(z”)とR(z’)の球殻に存在するhaloからのx-ray heatingを計算する

total X-ray emission rate(s^-1)

⇣X : number of the photons per 
solar mass in stars

f⇤: fraction of baryons converted	


 to stars

collapsed fraction

R
00

: comving null-geodesic distance between z’ and z’’

Smin, SR00 : mass variance on the scales corresponding to smallest mass sources and R’’

(x,z’)



Heating and ionization rate
arrival rate : あるxに届くphotonの数[s^-1Hz^-1]

IGM X-ray optical depth

X-ray heating rate per baryon

ν_0 : X-ray energyの下限
h�0 = 200eV

heatingに使われる電子のエネルギー



⌧X  1

⌧X � 1

: all photons are absorbed (sourceからやってきたphotonが全て吸収される)

: no photons are absorbed(photonは来る途中で吸収されるので、(x,z’)での吸収は起
きない。）

Heating and ionization rate
計算時間を早めるために、τ_xをstep function化

X-ray heating rate per baryon



Heating and ionization rate

primary ionizationsecondary ionization

X-ray photonによるionization rate
同様の考え方で

この式を用いてneutralな領域のionizing fractionを計算



Ly-α back ground
1.X-rayによって励起させられたHIによりLy-αが放射

Ly-αの寄与は二種類ある

x-ray heatingの計算と同じ方法でソースの数を考える

p↵ : excitation energyがLy-α photonに流入する割合

: X-ray energy がexcitation , heatingに流入する割合f
ex

, f
heat

: electronのenergyがLy-αに流入する割合

第1章 21cmFAST

1.1 はじめに
この章では 21cmFASTにおいて用いられる、再イオン化のモデルや計

算方法についてまとめる。21cmFASTとは再電離期（EoR）の準数値シュ
ミレーションの一つである。21cmFASTでは計算を流体シュミレーショ
ンよりも早くするために、様々な近似や仮定が用いられている。現在の最
新ヴァージョンでは、21cm線のパワースペクトルの計算を最短３時間で
行うことができる。この後の章では密度場、イオン化領域、特異速度の三
つについて詳しく述べる。

P21 = δT̄b(z)
2∆2

21(k, z) (1.1)

=
k3

2πV
δT̄b(z)

2⟨|δ21(k, z)|2⟩k (1.2)

δ21(x, z) ≡ δTb(x, z)

δT̄b(z)
− 1 (1.3)

fLyα = fexpα (1.4)

1.2 基本的なこと
21cmFASTは 21cm lineのパワースペクトルを計算することがとりあ

えずの目的となる。パワースペクトルの計算は輝度温度揺らぎから導かれ
る。視線方向の周波数νに対応する輝度温度を、

δTb(ν) =
Ts − Tγ

1 + z
(1− e−τν0 )

≈ 27xHI(1 + δnl)(
H

dvr/dr +H
(1− Tγ

Ts
)

×(
1 + z

10

0.15

ΩMh2
)
1
2 (

Ωbh2

0.023
)mK (1.5)

と定義する。この式の中にはスピン温度が用いられている。21cmFAST

の計算ではスピン温度はCMB温度に比べて十分大きいという近似を用い

1



Ly-α back ground
2.星からの直接放射
Ly-nがLy-αになって放射されるエネルギー

pop2かpop3かでLy-n光子の数が異なる

✏(⌫) / ⌫↵s�1

例Ly-αとLy-βの間の周波数を持つ光子 
pop2 6520個 
pop3 2670個 

Lyman-n photonはf_recycle(n)の割合でcascadeしてLyman-α
の準位まで落ちてくる。Lyman-n photonがcascadeして各々
がどれくらいLyman-α photonに寄与するかを表した式



まとめ
• 21cmFASTでは密度場やイオン化について近似的に計算 

• 得られた結果は主に大スケールでシミュレーションと良く一致 

• スピン温度について計算するかどうか選択できる 

• 現時点で自由に変更可能なパラメータ

f⇤, ⇥X ,�, T
vir,min

, C,R
max

, ⇥
ion

f⇤, ⇥X ,�, T
vir,min

, C,R
max

, ⇥
ion

f⇤, ⇥X ,�, T
vir,min

, C,R
max

, ⇥
ion

f⇤, ⇥X ,�, T
vir,min

, C,R
max

, ⇥
ion

f⇤, ⇥X ,�, T
vir,min

, C,R
max

, ⇥
ion

: baryonが星にconvertする割合
: 太陽質量あたりのX-rayの数

: 最小ビリアル温度

: ionizing photon のmean free path
: イオン化効率

ただし、これらのパラメータは時間、空間依存性を考えていない


